MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dflim3 Structured version   Visualization version   GIF version

Theorem dflim3 6939
Description: An alternate definition of a limit ordinal, which is any ordinal that is neither zero nor a successor. (Contributed by NM, 1-Nov-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dflim3 (Lim 𝐴 ↔ (Ord 𝐴 ∧ ¬ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥)))
Distinct variable group:   𝑥,𝐴

Proof of Theorem dflim3
StepHypRef Expression
1 df-lim 5645 . 2 (Lim 𝐴 ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴))
2 3anass 1035 . 2 ((Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴) ↔ (Ord 𝐴 ∧ (𝐴 ≠ ∅ ∧ 𝐴 = 𝐴)))
3 df-ne 2782 . . . . . 6 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
43a1i 11 . . . . 5 (Ord 𝐴 → (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅))
5 orduninsuc 6935 . . . . 5 (Ord 𝐴 → (𝐴 = 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥))
64, 5anbi12d 743 . . . 4 (Ord 𝐴 → ((𝐴 ≠ ∅ ∧ 𝐴 = 𝐴) ↔ (¬ 𝐴 = ∅ ∧ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥)))
7 ioran 510 . . . 4 (¬ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥) ↔ (¬ 𝐴 = ∅ ∧ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥))
86, 7syl6bbr 277 . . 3 (Ord 𝐴 → ((𝐴 ≠ ∅ ∧ 𝐴 = 𝐴) ↔ ¬ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥)))
98pm5.32i 667 . 2 ((Ord 𝐴 ∧ (𝐴 ≠ ∅ ∧ 𝐴 = 𝐴)) ↔ (Ord 𝐴 ∧ ¬ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥)))
101, 2, 93bitri 285 1 (Lim 𝐴 ↔ (Ord 𝐴 ∧ ¬ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wne 2780  wrex 2897  c0 3874   cuni 4372  Ord word 5639  Oncon0 5640  Lim wlim 5641  suc csuc 5642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-tr 4681  df-eprel 4949  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646
This theorem is referenced by:  nlimon  6943  tfinds  6951  oalimcl  7527  omlimcl  7545  r1wunlim  9438
  Copyright terms: Public domain W3C validator