Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfiso3 | Structured version Visualization version GIF version |
Description: Alternate definition of an isomorphism of a category as a section in both directions. (Contributed by AV, 11-Apr-2017.) |
Ref | Expression |
---|---|
dfiso3.b | ⊢ 𝐵 = (Base‘𝐶) |
dfiso3.h | ⊢ 𝐻 = (Hom ‘𝐶) |
dfiso3.i | ⊢ 𝐼 = (Iso‘𝐶) |
dfiso3.s | ⊢ 𝑆 = (Sect‘𝐶) |
dfiso3.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
dfiso3.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
dfiso3.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
dfiso3.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) |
Ref | Expression |
---|---|
dfiso3 | ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ ∃𝑔 ∈ (𝑌𝐻𝑋)(𝑔(𝑌𝑆𝑋)𝐹 ∧ 𝐹(𝑋𝑆𝑌)𝑔))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfiso3.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
2 | dfiso3.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
3 | dfiso3.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
4 | dfiso3.i | . . 3 ⊢ 𝐼 = (Iso‘𝐶) | |
5 | dfiso3.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
6 | dfiso3.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
7 | dfiso3.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) | |
8 | eqid 2610 | . . 3 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
9 | eqid 2610 | . . 3 ⊢ (〈𝑋, 𝑌〉(comp‘𝐶)𝑋) = (〈𝑋, 𝑌〉(comp‘𝐶)𝑋) | |
10 | eqid 2610 | . . 3 ⊢ (〈𝑌, 𝑋〉(comp‘𝐶)𝑌) = (〈𝑌, 𝑋〉(comp‘𝐶)𝑌) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | dfiso2 16255 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ ∃𝑔 ∈ (𝑌𝐻𝑋)((𝑔(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋) ∧ (𝐹(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)𝑔) = ((Id‘𝐶)‘𝑌)))) |
12 | eqid 2610 | . . . . . 6 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
13 | dfiso3.s | . . . . . 6 ⊢ 𝑆 = (Sect‘𝐶) | |
14 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝑌𝐻𝑋)) → 𝐶 ∈ Cat) |
15 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝑌𝐻𝑋)) → 𝑌 ∈ 𝐵) |
16 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝑌𝐻𝑋)) → 𝑋 ∈ 𝐵) |
17 | simpr 476 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝑌𝐻𝑋)) → 𝑔 ∈ (𝑌𝐻𝑋)) | |
18 | 7 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝑌𝐻𝑋)) → 𝐹 ∈ (𝑋𝐻𝑌)) |
19 | 1, 2, 12, 8, 13, 14, 15, 16, 17, 18 | issect2 16237 | . . . . 5 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝑌𝐻𝑋)) → (𝑔(𝑌𝑆𝑋)𝐹 ↔ (𝐹(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)𝑔) = ((Id‘𝐶)‘𝑌))) |
20 | 1, 2, 12, 8, 13, 14, 16, 15, 18, 17 | issect2 16237 | . . . . 5 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝑌𝐻𝑋)) → (𝐹(𝑋𝑆𝑌)𝑔 ↔ (𝑔(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋))) |
21 | 19, 20 | anbi12d 743 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝑌𝐻𝑋)) → ((𝑔(𝑌𝑆𝑋)𝐹 ∧ 𝐹(𝑋𝑆𝑌)𝑔) ↔ ((𝐹(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)𝑔) = ((Id‘𝐶)‘𝑌) ∧ (𝑔(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)))) |
22 | ancom 465 | . . . 4 ⊢ (((𝐹(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)𝑔) = ((Id‘𝐶)‘𝑌) ∧ (𝑔(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝑔(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋) ∧ (𝐹(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)𝑔) = ((Id‘𝐶)‘𝑌))) | |
23 | 21, 22 | syl6rbb 276 | . . 3 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝑌𝐻𝑋)) → (((𝑔(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋) ∧ (𝐹(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)𝑔) = ((Id‘𝐶)‘𝑌)) ↔ (𝑔(𝑌𝑆𝑋)𝐹 ∧ 𝐹(𝑋𝑆𝑌)𝑔))) |
24 | 23 | rexbidva 3031 | . 2 ⊢ (𝜑 → (∃𝑔 ∈ (𝑌𝐻𝑋)((𝑔(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋) ∧ (𝐹(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)𝑔) = ((Id‘𝐶)‘𝑌)) ↔ ∃𝑔 ∈ (𝑌𝐻𝑋)(𝑔(𝑌𝑆𝑋)𝐹 ∧ 𝐹(𝑋𝑆𝑌)𝑔))) |
25 | 11, 24 | bitrd 267 | 1 ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ ∃𝑔 ∈ (𝑌𝐻𝑋)(𝑔(𝑌𝑆𝑋)𝐹 ∧ 𝐹(𝑋𝑆𝑌)𝑔))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∃wrex 2897 〈cop 4131 class class class wbr 4583 ‘cfv 5804 (class class class)co 6549 Basecbs 15695 Hom chom 15779 compcco 15780 Catccat 16148 Idccid 16149 Sectcsect 16227 Isociso 16229 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-1st 7059 df-2nd 7060 df-sect 16230 df-inv 16231 df-iso 16232 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |