MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfif4 Structured version   Visualization version   GIF version

Theorem dfif4 4051
Description: Alternate definition of the conditional operator df-if 4037. Note that 𝜑 is independent of 𝑥 i.e. a constant true or false. (Contributed by NM, 25-Aug-2013.)
Hypothesis
Ref Expression
dfif3.1 𝐶 = {𝑥𝜑}
Assertion
Ref Expression
dfif4 if(𝜑, 𝐴, 𝐵) = ((𝐴𝐵) ∩ ((𝐴 ∪ (V ∖ 𝐶)) ∩ (𝐵𝐶)))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem dfif4
StepHypRef Expression
1 dfif3.1 . . 3 𝐶 = {𝑥𝜑}
21dfif3 4050 . 2 if(𝜑, 𝐴, 𝐵) = ((𝐴𝐶) ∪ (𝐵 ∩ (V ∖ 𝐶)))
3 undir 3835 . 2 ((𝐴𝐶) ∪ (𝐵 ∩ (V ∖ 𝐶))) = ((𝐴 ∪ (𝐵 ∩ (V ∖ 𝐶))) ∩ (𝐶 ∪ (𝐵 ∩ (V ∖ 𝐶))))
4 undi 3833 . . . 4 (𝐴 ∪ (𝐵 ∩ (V ∖ 𝐶))) = ((𝐴𝐵) ∩ (𝐴 ∪ (V ∖ 𝐶)))
5 undi 3833 . . . . 5 (𝐶 ∪ (𝐵 ∩ (V ∖ 𝐶))) = ((𝐶𝐵) ∩ (𝐶 ∪ (V ∖ 𝐶)))
6 uncom 3719 . . . . . 6 (𝐶𝐵) = (𝐵𝐶)
7 unvdif 3994 . . . . . 6 (𝐶 ∪ (V ∖ 𝐶)) = V
86, 7ineq12i 3774 . . . . 5 ((𝐶𝐵) ∩ (𝐶 ∪ (V ∖ 𝐶))) = ((𝐵𝐶) ∩ V)
9 inv1 3922 . . . . 5 ((𝐵𝐶) ∩ V) = (𝐵𝐶)
105, 8, 93eqtri 2636 . . . 4 (𝐶 ∪ (𝐵 ∩ (V ∖ 𝐶))) = (𝐵𝐶)
114, 10ineq12i 3774 . . 3 ((𝐴 ∪ (𝐵 ∩ (V ∖ 𝐶))) ∩ (𝐶 ∪ (𝐵 ∩ (V ∖ 𝐶)))) = (((𝐴𝐵) ∩ (𝐴 ∪ (V ∖ 𝐶))) ∩ (𝐵𝐶))
12 inass 3785 . . 3 (((𝐴𝐵) ∩ (𝐴 ∪ (V ∖ 𝐶))) ∩ (𝐵𝐶)) = ((𝐴𝐵) ∩ ((𝐴 ∪ (V ∖ 𝐶)) ∩ (𝐵𝐶)))
1311, 12eqtri 2632 . 2 ((𝐴 ∪ (𝐵 ∩ (V ∖ 𝐶))) ∩ (𝐶 ∪ (𝐵 ∩ (V ∖ 𝐶)))) = ((𝐴𝐵) ∩ ((𝐴 ∪ (V ∖ 𝐶)) ∩ (𝐵𝐶)))
142, 3, 133eqtri 2636 1 if(𝜑, 𝐴, 𝐵) = ((𝐴𝐵) ∩ ((𝐴 ∪ (V ∖ 𝐶)) ∩ (𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1475  {cab 2596  Vcvv 3173  cdif 3537  cun 3538  cin 3539  ifcif 4036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037
This theorem is referenced by:  dfif5  4052
  Copyright terms: Public domain W3C validator