Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dffrege69 | Structured version Visualization version GIF version |
Description: If from the proposition that 𝑥 has property 𝐴 it can be inferred generally, whatever 𝑥 may be, that every result of an application of the procedure 𝑅 to 𝑥 has property 𝐴, then we say " Property 𝐴 is hereditary in the 𝑅-sequence. Definition 69 of [Frege1879] p. 55. (Contributed by RP, 28-Mar-2020.) |
Ref | Expression |
---|---|
dffrege69 | ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦(𝑥𝑅𝑦 → 𝑦 ∈ 𝐴)) ↔ 𝑅 hereditary 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfhe3 37089 | . 2 ⊢ (𝑅 hereditary 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦(𝑥𝑅𝑦 → 𝑦 ∈ 𝐴))) | |
2 | 1 | bicomi 213 | 1 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦(𝑥𝑅𝑦 → 𝑦 ∈ 𝐴)) ↔ 𝑅 hereditary 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∀wal 1473 ∈ wcel 1977 class class class wbr 4583 hereditary whe 37086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-br 4584 df-opab 4644 df-xp 5044 df-cnv 5046 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-he 37087 |
This theorem is referenced by: frege70 37247 frege75 37252 |
Copyright terms: Public domain | W3C validator |