Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dffix2 Structured version   Visualization version   GIF version

Theorem dffix2 31182
 Description: The fixpoints of a class in terms of its range. (Contributed by Scott Fenton, 16-Apr-2012.)
Assertion
Ref Expression
dffix2 Fix 𝐴 = ran (𝐴 ∩ I )

Proof of Theorem dffix2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3176 . . . 4 𝑥 ∈ V
21elfix 31180 . . 3 (𝑥 Fix 𝐴𝑥𝐴𝑥)
31elrn 5287 . . . 4 (𝑥 ∈ ran (𝐴 ∩ I ) ↔ ∃𝑦 𝑦(𝐴 ∩ I )𝑥)
4 brin 4634 . . . . . 6 (𝑦(𝐴 ∩ I )𝑥 ↔ (𝑦𝐴𝑥𝑦 I 𝑥))
5 ancom 465 . . . . . 6 ((𝑦𝐴𝑥𝑦 I 𝑥) ↔ (𝑦 I 𝑥𝑦𝐴𝑥))
61ideq 5196 . . . . . . 7 (𝑦 I 𝑥𝑦 = 𝑥)
76anbi1i 727 . . . . . 6 ((𝑦 I 𝑥𝑦𝐴𝑥) ↔ (𝑦 = 𝑥𝑦𝐴𝑥))
84, 5, 73bitri 285 . . . . 5 (𝑦(𝐴 ∩ I )𝑥 ↔ (𝑦 = 𝑥𝑦𝐴𝑥))
98exbii 1764 . . . 4 (∃𝑦 𝑦(𝐴 ∩ I )𝑥 ↔ ∃𝑦(𝑦 = 𝑥𝑦𝐴𝑥))
10 breq1 4586 . . . . 5 (𝑦 = 𝑥 → (𝑦𝐴𝑥𝑥𝐴𝑥))
111, 10ceqsexv 3215 . . . 4 (∃𝑦(𝑦 = 𝑥𝑦𝐴𝑥) ↔ 𝑥𝐴𝑥)
123, 9, 113bitri 285 . . 3 (𝑥 ∈ ran (𝐴 ∩ I ) ↔ 𝑥𝐴𝑥)
132, 12bitr4i 266 . 2 (𝑥 Fix 𝐴𝑥 ∈ ran (𝐴 ∩ I ))
1413eqriv 2607 1 Fix 𝐴 = ran (𝐴 ∩ I )
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 383   = wceq 1475  ∃wex 1695   ∈ wcel 1977   ∩ cin 3539   class class class wbr 4583   I cid 4948  ran crn 5039   Fix cfix 31111 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-dm 5048  df-rn 5049  df-fix 31135 This theorem is referenced by:  fixssrn  31184
 Copyright terms: Public domain W3C validator