Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfeven4 | Structured version Visualization version GIF version |
Description: Alternate definition for even numbers. (Contributed by AV, 18-Jun-2020.) |
Ref | Expression |
---|---|
dfeven4 | ⊢ Even = {𝑧 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑧 = (2 · 𝑖)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-even 40077 | . 2 ⊢ Even = {𝑧 ∈ ℤ ∣ (𝑧 / 2) ∈ ℤ} | |
2 | simpr 476 | . . . . . 6 ⊢ ((𝑧 ∈ ℤ ∧ (𝑧 / 2) ∈ ℤ) → (𝑧 / 2) ∈ ℤ) | |
3 | oveq2 6557 | . . . . . . . 8 ⊢ (𝑖 = (𝑧 / 2) → (2 · 𝑖) = (2 · (𝑧 / 2))) | |
4 | 3 | eqeq2d 2620 | . . . . . . 7 ⊢ (𝑖 = (𝑧 / 2) → (𝑧 = (2 · 𝑖) ↔ 𝑧 = (2 · (𝑧 / 2)))) |
5 | 4 | adantl 481 | . . . . . 6 ⊢ (((𝑧 ∈ ℤ ∧ (𝑧 / 2) ∈ ℤ) ∧ 𝑖 = (𝑧 / 2)) → (𝑧 = (2 · 𝑖) ↔ 𝑧 = (2 · (𝑧 / 2)))) |
6 | zcn 11259 | . . . . . . . . 9 ⊢ (𝑧 ∈ ℤ → 𝑧 ∈ ℂ) | |
7 | 6 | adantr 480 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℤ ∧ (𝑧 / 2) ∈ ℤ) → 𝑧 ∈ ℂ) |
8 | 2cnd 10970 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℤ ∧ (𝑧 / 2) ∈ ℤ) → 2 ∈ ℂ) | |
9 | 2ne0 10990 | . . . . . . . . 9 ⊢ 2 ≠ 0 | |
10 | 9 | a1i 11 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℤ ∧ (𝑧 / 2) ∈ ℤ) → 2 ≠ 0) |
11 | 7, 8, 10 | divcan2d 10682 | . . . . . . 7 ⊢ ((𝑧 ∈ ℤ ∧ (𝑧 / 2) ∈ ℤ) → (2 · (𝑧 / 2)) = 𝑧) |
12 | 11 | eqcomd 2616 | . . . . . 6 ⊢ ((𝑧 ∈ ℤ ∧ (𝑧 / 2) ∈ ℤ) → 𝑧 = (2 · (𝑧 / 2))) |
13 | 2, 5, 12 | rspcedvd 3289 | . . . . 5 ⊢ ((𝑧 ∈ ℤ ∧ (𝑧 / 2) ∈ ℤ) → ∃𝑖 ∈ ℤ 𝑧 = (2 · 𝑖)) |
14 | 13 | ex 449 | . . . 4 ⊢ (𝑧 ∈ ℤ → ((𝑧 / 2) ∈ ℤ → ∃𝑖 ∈ ℤ 𝑧 = (2 · 𝑖))) |
15 | oveq1 6556 | . . . . . . . 8 ⊢ (𝑧 = (2 · 𝑖) → (𝑧 / 2) = ((2 · 𝑖) / 2)) | |
16 | zcn 11259 | . . . . . . . . . 10 ⊢ (𝑖 ∈ ℤ → 𝑖 ∈ ℂ) | |
17 | 16 | adantl 481 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℂ) |
18 | 2cnd 10970 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 2 ∈ ℂ) | |
19 | 9 | a1i 11 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 2 ≠ 0) |
20 | 17, 18, 19 | divcan3d 10685 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → ((2 · 𝑖) / 2) = 𝑖) |
21 | 15, 20 | sylan9eqr 2666 | . . . . . . 7 ⊢ (((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝑧 = (2 · 𝑖)) → (𝑧 / 2) = 𝑖) |
22 | simpr 476 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℤ) | |
23 | 22 | adantr 480 | . . . . . . 7 ⊢ (((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝑧 = (2 · 𝑖)) → 𝑖 ∈ ℤ) |
24 | 21, 23 | eqeltrd 2688 | . . . . . 6 ⊢ (((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝑧 = (2 · 𝑖)) → (𝑧 / 2) ∈ ℤ) |
25 | 24 | ex 449 | . . . . 5 ⊢ ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝑧 = (2 · 𝑖) → (𝑧 / 2) ∈ ℤ)) |
26 | 25 | rexlimdva 3013 | . . . 4 ⊢ (𝑧 ∈ ℤ → (∃𝑖 ∈ ℤ 𝑧 = (2 · 𝑖) → (𝑧 / 2) ∈ ℤ)) |
27 | 14, 26 | impbid 201 | . . 3 ⊢ (𝑧 ∈ ℤ → ((𝑧 / 2) ∈ ℤ ↔ ∃𝑖 ∈ ℤ 𝑧 = (2 · 𝑖))) |
28 | 27 | rabbiia 3161 | . 2 ⊢ {𝑧 ∈ ℤ ∣ (𝑧 / 2) ∈ ℤ} = {𝑧 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑧 = (2 · 𝑖)} |
29 | 1, 28 | eqtri 2632 | 1 ⊢ Even = {𝑧 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑧 = (2 · 𝑖)} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ≠ wne 2780 ∃wrex 2897 {crab 2900 (class class class)co 6549 ℂcc 9813 0cc0 9815 · cmul 9820 / cdiv 10563 2c2 10947 ℤcz 11254 Even ceven 40075 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-po 4959 df-so 4960 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-2 10956 df-z 11255 df-even 40077 |
This theorem is referenced by: m1expevenALTV 40098 dfeven2 40100 opoeALTV 40132 opeoALTV 40133 |
Copyright terms: Public domain | W3C validator |