Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfec2 | Structured version Visualization version GIF version |
Description: Alternate definition of 𝑅-coset of 𝐴. Definition 34 of [Suppes] p. 81. (Contributed by NM, 3-Jan-1997.) (Proof shortened by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
dfec2 | ⊢ (𝐴 ∈ 𝑉 → [𝐴]𝑅 = {𝑦 ∣ 𝐴𝑅𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ec 7631 | . 2 ⊢ [𝐴]𝑅 = (𝑅 “ {𝐴}) | |
2 | imasng 5406 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑅 “ {𝐴}) = {𝑦 ∣ 𝐴𝑅𝑦}) | |
3 | 1, 2 | syl5eq 2656 | 1 ⊢ (𝐴 ∈ 𝑉 → [𝐴]𝑅 = {𝑦 ∣ 𝐴𝑅𝑦}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1475 ∈ wcel 1977 {cab 2596 {csn 4125 class class class wbr 4583 “ cima 5041 [cec 7627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-br 4584 df-opab 4644 df-xp 5044 df-cnv 5046 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-ec 7631 |
This theorem is referenced by: elqsecl 7688 eqglact 17468 tgpconcompeqg 21725 fvline 31421 ellines 31429 |
Copyright terms: Public domain | W3C validator |