Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfec2 Structured version   Visualization version   GIF version

Theorem dfec2 7632
 Description: Alternate definition of 𝑅-coset of 𝐴. Definition 34 of [Suppes] p. 81. (Contributed by NM, 3-Jan-1997.) (Proof shortened by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
dfec2 (𝐴𝑉 → [𝐴]𝑅 = {𝑦𝐴𝑅𝑦})
Distinct variable groups:   𝑦,𝐴   𝑦,𝑅
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem dfec2
StepHypRef Expression
1 df-ec 7631 . 2 [𝐴]𝑅 = (𝑅 “ {𝐴})
2 imasng 5406 . 2 (𝐴𝑉 → (𝑅 “ {𝐴}) = {𝑦𝐴𝑅𝑦})
31, 2syl5eq 2656 1 (𝐴𝑉 → [𝐴]𝑅 = {𝑦𝐴𝑅𝑦})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1475   ∈ wcel 1977  {cab 2596  {csn 4125   class class class wbr 4583   “ cima 5041  [cec 7627 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-xp 5044  df-cnv 5046  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ec 7631 This theorem is referenced by:  elqsecl  7688  eqglact  17468  tgpconcompeqg  21725  fvline  31421  ellines  31429
 Copyright terms: Public domain W3C validator