Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfdm5 Structured version   Visualization version   GIF version

Theorem dfdm5 30921
Description: Definition of domain in terms of 1st and image. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
dfdm5 dom 𝐴 = ((1st ↾ (V × V)) “ 𝐴)

Proof of Theorem dfdm5
Dummy variables 𝑝 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 excom 2029 . . . 4 (∃𝑦𝑝𝑧(𝑝 = ⟨𝑧, 𝑦⟩ ∧ (𝑝1st 𝑥𝑝𝐴)) ↔ ∃𝑝𝑦𝑧(𝑝 = ⟨𝑧, 𝑦⟩ ∧ (𝑝1st 𝑥𝑝𝐴)))
2 opex 4859 . . . . . . . 8 𝑧, 𝑦⟩ ∈ V
3 breq1 4586 . . . . . . . . . 10 (𝑝 = ⟨𝑧, 𝑦⟩ → (𝑝1st 𝑥 ↔ ⟨𝑧, 𝑦⟩1st 𝑥))
4 eleq1 2676 . . . . . . . . . 10 (𝑝 = ⟨𝑧, 𝑦⟩ → (𝑝𝐴 ↔ ⟨𝑧, 𝑦⟩ ∈ 𝐴))
53, 4anbi12d 743 . . . . . . . . 9 (𝑝 = ⟨𝑧, 𝑦⟩ → ((𝑝1st 𝑥𝑝𝐴) ↔ (⟨𝑧, 𝑦⟩1st 𝑥 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴)))
6 vex 3176 . . . . . . . . . . . 12 𝑧 ∈ V
7 vex 3176 . . . . . . . . . . . 12 𝑦 ∈ V
8 vex 3176 . . . . . . . . . . . 12 𝑥 ∈ V
96, 7, 8br1steq 30917 . . . . . . . . . . 11 (⟨𝑧, 𝑦⟩1st 𝑥𝑥 = 𝑧)
10 equcom 1932 . . . . . . . . . . 11 (𝑥 = 𝑧𝑧 = 𝑥)
119, 10bitri 263 . . . . . . . . . 10 (⟨𝑧, 𝑦⟩1st 𝑥𝑧 = 𝑥)
1211anbi1i 727 . . . . . . . . 9 ((⟨𝑧, 𝑦⟩1st 𝑥 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴) ↔ (𝑧 = 𝑥 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴))
135, 12syl6bb 275 . . . . . . . 8 (𝑝 = ⟨𝑧, 𝑦⟩ → ((𝑝1st 𝑥𝑝𝐴) ↔ (𝑧 = 𝑥 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴)))
142, 13ceqsexv 3215 . . . . . . 7 (∃𝑝(𝑝 = ⟨𝑧, 𝑦⟩ ∧ (𝑝1st 𝑥𝑝𝐴)) ↔ (𝑧 = 𝑥 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴))
1514exbii 1764 . . . . . 6 (∃𝑧𝑝(𝑝 = ⟨𝑧, 𝑦⟩ ∧ (𝑝1st 𝑥𝑝𝐴)) ↔ ∃𝑧(𝑧 = 𝑥 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴))
16 excom 2029 . . . . . 6 (∃𝑧𝑝(𝑝 = ⟨𝑧, 𝑦⟩ ∧ (𝑝1st 𝑥𝑝𝐴)) ↔ ∃𝑝𝑧(𝑝 = ⟨𝑧, 𝑦⟩ ∧ (𝑝1st 𝑥𝑝𝐴)))
17 opeq1 4340 . . . . . . . 8 (𝑧 = 𝑥 → ⟨𝑧, 𝑦⟩ = ⟨𝑥, 𝑦⟩)
1817eleq1d 2672 . . . . . . 7 (𝑧 = 𝑥 → (⟨𝑧, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴))
198, 18ceqsexv 3215 . . . . . 6 (∃𝑧(𝑧 = 𝑥 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴)
2015, 16, 193bitr3ri 290 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ∃𝑝𝑧(𝑝 = ⟨𝑧, 𝑦⟩ ∧ (𝑝1st 𝑥𝑝𝐴)))
2120exbii 1764 . . . 4 (∃𝑦𝑥, 𝑦⟩ ∈ 𝐴 ↔ ∃𝑦𝑝𝑧(𝑝 = ⟨𝑧, 𝑦⟩ ∧ (𝑝1st 𝑥𝑝𝐴)))
22 ancom 465 . . . . . 6 ((𝑝𝐴𝑝(1st ↾ (V × V))𝑥) ↔ (𝑝(1st ↾ (V × V))𝑥𝑝𝐴))
23 anass 679 . . . . . . 7 (((∃𝑦𝑧 𝑝 = ⟨𝑧, 𝑦⟩ ∧ 𝑝1st 𝑥) ∧ 𝑝𝐴) ↔ (∃𝑦𝑧 𝑝 = ⟨𝑧, 𝑦⟩ ∧ (𝑝1st 𝑥𝑝𝐴)))
248brres 5323 . . . . . . . . 9 (𝑝(1st ↾ (V × V))𝑥 ↔ (𝑝1st 𝑥𝑝 ∈ (V × V)))
25 ancom 465 . . . . . . . . . 10 ((𝑝1st 𝑥𝑝 ∈ (V × V)) ↔ (𝑝 ∈ (V × V) ∧ 𝑝1st 𝑥))
26 elvv 5100 . . . . . . . . . . . 12 (𝑝 ∈ (V × V) ↔ ∃𝑧𝑦 𝑝 = ⟨𝑧, 𝑦⟩)
27 excom 2029 . . . . . . . . . . . 12 (∃𝑧𝑦 𝑝 = ⟨𝑧, 𝑦⟩ ↔ ∃𝑦𝑧 𝑝 = ⟨𝑧, 𝑦⟩)
2826, 27bitri 263 . . . . . . . . . . 11 (𝑝 ∈ (V × V) ↔ ∃𝑦𝑧 𝑝 = ⟨𝑧, 𝑦⟩)
2928anbi1i 727 . . . . . . . . . 10 ((𝑝 ∈ (V × V) ∧ 𝑝1st 𝑥) ↔ (∃𝑦𝑧 𝑝 = ⟨𝑧, 𝑦⟩ ∧ 𝑝1st 𝑥))
3025, 29bitri 263 . . . . . . . . 9 ((𝑝1st 𝑥𝑝 ∈ (V × V)) ↔ (∃𝑦𝑧 𝑝 = ⟨𝑧, 𝑦⟩ ∧ 𝑝1st 𝑥))
3124, 30bitri 263 . . . . . . . 8 (𝑝(1st ↾ (V × V))𝑥 ↔ (∃𝑦𝑧 𝑝 = ⟨𝑧, 𝑦⟩ ∧ 𝑝1st 𝑥))
3231anbi1i 727 . . . . . . 7 ((𝑝(1st ↾ (V × V))𝑥𝑝𝐴) ↔ ((∃𝑦𝑧 𝑝 = ⟨𝑧, 𝑦⟩ ∧ 𝑝1st 𝑥) ∧ 𝑝𝐴))
33 19.41vv 1902 . . . . . . 7 (∃𝑦𝑧(𝑝 = ⟨𝑧, 𝑦⟩ ∧ (𝑝1st 𝑥𝑝𝐴)) ↔ (∃𝑦𝑧 𝑝 = ⟨𝑧, 𝑦⟩ ∧ (𝑝1st 𝑥𝑝𝐴)))
3423, 32, 333bitr4i 291 . . . . . 6 ((𝑝(1st ↾ (V × V))𝑥𝑝𝐴) ↔ ∃𝑦𝑧(𝑝 = ⟨𝑧, 𝑦⟩ ∧ (𝑝1st 𝑥𝑝𝐴)))
3522, 34bitri 263 . . . . 5 ((𝑝𝐴𝑝(1st ↾ (V × V))𝑥) ↔ ∃𝑦𝑧(𝑝 = ⟨𝑧, 𝑦⟩ ∧ (𝑝1st 𝑥𝑝𝐴)))
3635exbii 1764 . . . 4 (∃𝑝(𝑝𝐴𝑝(1st ↾ (V × V))𝑥) ↔ ∃𝑝𝑦𝑧(𝑝 = ⟨𝑧, 𝑦⟩ ∧ (𝑝1st 𝑥𝑝𝐴)))
371, 21, 363bitr4i 291 . . 3 (∃𝑦𝑥, 𝑦⟩ ∈ 𝐴 ↔ ∃𝑝(𝑝𝐴𝑝(1st ↾ (V × V))𝑥))
388eldm2 5244 . . 3 (𝑥 ∈ dom 𝐴 ↔ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐴)
398elima2 5391 . . 3 (𝑥 ∈ ((1st ↾ (V × V)) “ 𝐴) ↔ ∃𝑝(𝑝𝐴𝑝(1st ↾ (V × V))𝑥))
4037, 38, 393bitr4i 291 . 2 (𝑥 ∈ dom 𝐴𝑥 ∈ ((1st ↾ (V × V)) “ 𝐴))
4140eqriv 2607 1 dom 𝐴 = ((1st ↾ (V × V)) “ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 383   = wceq 1475  wex 1695  wcel 1977  Vcvv 3173  cop 4131   class class class wbr 4583   × cxp 5036  dom cdm 5038  cres 5040  cima 5041  1st c1st 7057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fo 5810  df-fv 5812  df-1st 7059
This theorem is referenced by:  brdomain  31210
  Copyright terms: Public domain W3C validator