Step | Hyp | Ref
| Expression |
1 | | df-ceil 12456 |
. 2
⊢ ⌈ =
(𝑥 ∈ ℝ ↦
-(⌊‘-𝑥)) |
2 | | zre 11258 |
. . . . . . 7
⊢ (𝑧 ∈ ℤ → 𝑧 ∈
ℝ) |
3 | | lenegcon2 10412 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑥 ≤ -𝑧 ↔ 𝑧 ≤ -𝑥)) |
4 | | peano2re 10088 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ → (𝑥 + 1) ∈
ℝ) |
5 | 4 | anim2i 591 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑧 ∈ ℝ ∧ (𝑥 + 1) ∈
ℝ)) |
6 | 5 | ancoms 468 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑧 ∈ ℝ ∧ (𝑥 + 1) ∈
ℝ)) |
7 | | ltnegcon1 10408 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ ℝ ∧ (𝑥 + 1) ∈ ℝ) →
(-𝑧 < (𝑥 + 1) ↔ -(𝑥 + 1) < 𝑧)) |
8 | 6, 7 | syl 17 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-𝑧 < (𝑥 + 1) ↔ -(𝑥 + 1) < 𝑧)) |
9 | | recn 9905 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ → 𝑥 ∈
ℂ) |
10 | | 1cnd 9935 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ → 1 ∈
ℂ) |
11 | 9, 10 | negdid 10284 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ → -(𝑥 + 1) = (-𝑥 + -1)) |
12 | 11 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → -(𝑥 + 1) = (-𝑥 + -1)) |
13 | 12 | breq1d 4593 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-(𝑥 + 1) < 𝑧 ↔ (-𝑥 + -1) < 𝑧)) |
14 | | renegcl 10223 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ → -𝑥 ∈
ℝ) |
15 | 14 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → -𝑥 ∈
ℝ) |
16 | | neg1rr 11002 |
. . . . . . . . . . . 12
⊢ -1 ∈
ℝ |
17 | 16 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → -1
∈ ℝ) |
18 | | simpr 476 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑧 ∈
ℝ) |
19 | 15, 17, 18 | ltaddsubd 10506 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((-𝑥 + -1) < 𝑧 ↔ -𝑥 < (𝑧 − -1))) |
20 | | recn 9905 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ ℝ → 𝑧 ∈
ℂ) |
21 | | 1cnd 9935 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ ℝ → 1 ∈
ℂ) |
22 | 20, 21 | subnegd 10278 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ ℝ → (𝑧 − -1) = (𝑧 + 1)) |
23 | 22 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑧 − -1) = (𝑧 + 1)) |
24 | 23 | breq2d 4595 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-𝑥 < (𝑧 − -1) ↔ -𝑥 < (𝑧 + 1))) |
25 | 19, 24 | bitrd 267 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((-𝑥 + -1) < 𝑧 ↔ -𝑥 < (𝑧 + 1))) |
26 | 8, 13, 25 | 3bitrd 293 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-𝑧 < (𝑥 + 1) ↔ -𝑥 < (𝑧 + 1))) |
27 | 3, 26 | anbi12d 743 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑥 ≤ -𝑧 ∧ -𝑧 < (𝑥 + 1)) ↔ (𝑧 ≤ -𝑥 ∧ -𝑥 < (𝑧 + 1)))) |
28 | 2, 27 | sylan2 490 |
. . . . . 6
⊢ ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℤ) → ((𝑥 ≤ -𝑧 ∧ -𝑧 < (𝑥 + 1)) ↔ (𝑧 ≤ -𝑥 ∧ -𝑥 < (𝑧 + 1)))) |
29 | 28 | riotabidva 6527 |
. . . . 5
⊢ (𝑥 ∈ ℝ →
(℩𝑧 ∈
ℤ (𝑥 ≤ -𝑧 ∧ -𝑧 < (𝑥 + 1))) = (℩𝑧 ∈ ℤ (𝑧 ≤ -𝑥 ∧ -𝑥 < (𝑧 + 1)))) |
30 | 29 | negeqd 10154 |
. . . 4
⊢ (𝑥 ∈ ℝ →
-(℩𝑧 ∈
ℤ (𝑥 ≤ -𝑧 ∧ -𝑧 < (𝑥 + 1))) = -(℩𝑧 ∈ ℤ (𝑧 ≤ -𝑥 ∧ -𝑥 < (𝑧 + 1)))) |
31 | | zbtwnre 11662 |
. . . . 5
⊢ (𝑥 ∈ ℝ →
∃!𝑦 ∈ ℤ
(𝑥 ≤ 𝑦 ∧ 𝑦 < (𝑥 + 1))) |
32 | | breq2 4587 |
. . . . . . 7
⊢ (𝑦 = -𝑧 → (𝑥 ≤ 𝑦 ↔ 𝑥 ≤ -𝑧)) |
33 | | breq1 4586 |
. . . . . . 7
⊢ (𝑦 = -𝑧 → (𝑦 < (𝑥 + 1) ↔ -𝑧 < (𝑥 + 1))) |
34 | 32, 33 | anbi12d 743 |
. . . . . 6
⊢ (𝑦 = -𝑧 → ((𝑥 ≤ 𝑦 ∧ 𝑦 < (𝑥 + 1)) ↔ (𝑥 ≤ -𝑧 ∧ -𝑧 < (𝑥 + 1)))) |
35 | 34 | zriotaneg 11367 |
. . . . 5
⊢
(∃!𝑦 ∈
ℤ (𝑥 ≤ 𝑦 ∧ 𝑦 < (𝑥 + 1)) → (℩𝑦 ∈ ℤ (𝑥 ≤ 𝑦 ∧ 𝑦 < (𝑥 + 1))) = -(℩𝑧 ∈ ℤ (𝑥 ≤ -𝑧 ∧ -𝑧 < (𝑥 + 1)))) |
36 | 31, 35 | syl 17 |
. . . 4
⊢ (𝑥 ∈ ℝ →
(℩𝑦 ∈
ℤ (𝑥 ≤ 𝑦 ∧ 𝑦 < (𝑥 + 1))) = -(℩𝑧 ∈ ℤ (𝑥 ≤ -𝑧 ∧ -𝑧 < (𝑥 + 1)))) |
37 | | flval 12457 |
. . . . . 6
⊢ (-𝑥 ∈ ℝ →
(⌊‘-𝑥) =
(℩𝑧 ∈
ℤ (𝑧 ≤ -𝑥 ∧ -𝑥 < (𝑧 + 1)))) |
38 | 14, 37 | syl 17 |
. . . . 5
⊢ (𝑥 ∈ ℝ →
(⌊‘-𝑥) =
(℩𝑧 ∈
ℤ (𝑧 ≤ -𝑥 ∧ -𝑥 < (𝑧 + 1)))) |
39 | 38 | negeqd 10154 |
. . . 4
⊢ (𝑥 ∈ ℝ →
-(⌊‘-𝑥) =
-(℩𝑧 ∈
ℤ (𝑧 ≤ -𝑥 ∧ -𝑥 < (𝑧 + 1)))) |
40 | 30, 36, 39 | 3eqtr4rd 2655 |
. . 3
⊢ (𝑥 ∈ ℝ →
-(⌊‘-𝑥) =
(℩𝑦 ∈
ℤ (𝑥 ≤ 𝑦 ∧ 𝑦 < (𝑥 + 1)))) |
41 | 40 | mpteq2ia 4668 |
. 2
⊢ (𝑥 ∈ ℝ ↦
-(⌊‘-𝑥)) =
(𝑥 ∈ ℝ ↦
(℩𝑦 ∈
ℤ (𝑥 ≤ 𝑦 ∧ 𝑦 < (𝑥 + 1)))) |
42 | 1, 41 | eqtri 2632 |
1
⊢ ⌈ =
(𝑥 ∈ ℝ ↦
(℩𝑦 ∈
ℤ (𝑥 ≤ 𝑦 ∧ 𝑦 < (𝑥 + 1)))) |