 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfbi1 Structured version   Visualization version   GIF version

Theorem dfbi1 201
 Description: Relate the biconditional connective to primitive connectives. See dfbi1ALT 202 for an unusual version proved directly from axioms. (Contributed by NM, 29-Dec-1992.)
Assertion
Ref Expression
dfbi1 ((𝜑𝜓) ↔ ¬ ((𝜑𝜓) → ¬ (𝜓𝜑)))

Proof of Theorem dfbi1
StepHypRef Expression
1 df-bi 195 . . 3 ¬ (((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓)))
2 simplim 161 . . 3 (¬ (((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓))) → ((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))))
31, 2ax-mp 5 . 2 ((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑)))
4 impbi 196 . . 3 ((𝜑𝜓) → ((𝜓𝜑) → (𝜑𝜓)))
54impi 158 . 2 (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓))
63, 5impbii 197 1 ((𝜑𝜓) ↔ ¬ ((𝜑𝜓) → ¬ (𝜓𝜑)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 194 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 195 This theorem is referenced by:  biimpr  208  dfbi2  657  tbw-bijust  1613  rb-bijust  1664  axrepprim  30639  axacprim  30644
 Copyright terms: Public domain W3C validator