Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfafn5b Structured version   Visualization version   GIF version

Theorem dfafn5b 39890
Description: Representation of a function in terms of its values, analogous to dffn5 6151 (only if it is assumed that the function value for each x is a set). (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
dfafn5b (∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝑉 → (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹'''𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem dfafn5b
StepHypRef Expression
1 dfafn5a 39889 . 2 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹'''𝑥)))
2 eqid 2610 . . . 4 (𝑥𝐴 ↦ (𝐹'''𝑥)) = (𝑥𝐴 ↦ (𝐹'''𝑥))
32fnmpt 5933 . . 3 (∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝑉 → (𝑥𝐴 ↦ (𝐹'''𝑥)) Fn 𝐴)
4 fneq1 5893 . . 3 (𝐹 = (𝑥𝐴 ↦ (𝐹'''𝑥)) → (𝐹 Fn 𝐴 ↔ (𝑥𝐴 ↦ (𝐹'''𝑥)) Fn 𝐴))
53, 4syl5ibrcom 236 . 2 (∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝑉 → (𝐹 = (𝑥𝐴 ↦ (𝐹'''𝑥)) → 𝐹 Fn 𝐴))
61, 5impbid2 215 1 (∀𝑥𝐴 (𝐹'''𝑥) ∈ 𝑉 → (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹'''𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195   = wceq 1475  wcel 1977  wral 2896  cmpt 4643   Fn wfn 5799  '''cafv 39843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-res 5050  df-iota 5768  df-fun 5806  df-fn 5807  df-fv 5812  df-dfat 39845  df-afv 39846
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator