Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfac8 | Structured version Visualization version GIF version |
Description: A proof of the equivalency of the Well Ordering Theorem weth 9200 and the Axiom of Choice ac7 9178. (Contributed by Mario Carneiro, 5-Jan-2013.) |
Ref | Expression |
---|---|
dfac8 | ⊢ (CHOICE ↔ ∀𝑥∃𝑟 𝑟 We 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfac3 8827 | . 2 ⊢ (CHOICE ↔ ∀𝑦∃𝑓∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) | |
2 | vex 3176 | . . . . . 6 ⊢ 𝑥 ∈ V | |
3 | vpwex 4775 | . . . . . . 7 ⊢ 𝒫 𝑥 ∈ V | |
4 | raleq 3115 | . . . . . . . 8 ⊢ (𝑦 = 𝒫 𝑥 → (∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ↔ ∀𝑧 ∈ 𝒫 𝑥(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧))) | |
5 | 4 | exbidv 1837 | . . . . . . 7 ⊢ (𝑦 = 𝒫 𝑥 → (∃𝑓∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ↔ ∃𝑓∀𝑧 ∈ 𝒫 𝑥(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧))) |
6 | 3, 5 | spcv 3272 | . . . . . 6 ⊢ (∀𝑦∃𝑓∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → ∃𝑓∀𝑧 ∈ 𝒫 𝑥(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) |
7 | dfac8a 8736 | . . . . . 6 ⊢ (𝑥 ∈ V → (∃𝑓∀𝑧 ∈ 𝒫 𝑥(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → 𝑥 ∈ dom card)) | |
8 | 2, 6, 7 | mpsyl 66 | . . . . 5 ⊢ (∀𝑦∃𝑓∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → 𝑥 ∈ dom card) |
9 | dfac8b 8737 | . . . . 5 ⊢ (𝑥 ∈ dom card → ∃𝑟 𝑟 We 𝑥) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (∀𝑦∃𝑓∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → ∃𝑟 𝑟 We 𝑥) |
11 | 10 | alrimiv 1842 | . . 3 ⊢ (∀𝑦∃𝑓∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → ∀𝑥∃𝑟 𝑟 We 𝑥) |
12 | vex 3176 | . . . . 5 ⊢ 𝑦 ∈ V | |
13 | vuniex 6852 | . . . . . 6 ⊢ ∪ 𝑦 ∈ V | |
14 | weeq2 5027 | . . . . . . 7 ⊢ (𝑥 = ∪ 𝑦 → (𝑟 We 𝑥 ↔ 𝑟 We ∪ 𝑦)) | |
15 | 14 | exbidv 1837 | . . . . . 6 ⊢ (𝑥 = ∪ 𝑦 → (∃𝑟 𝑟 We 𝑥 ↔ ∃𝑟 𝑟 We ∪ 𝑦)) |
16 | 13, 15 | spcv 3272 | . . . . 5 ⊢ (∀𝑥∃𝑟 𝑟 We 𝑥 → ∃𝑟 𝑟 We ∪ 𝑦) |
17 | dfac8c 8739 | . . . . 5 ⊢ (𝑦 ∈ V → (∃𝑟 𝑟 We ∪ 𝑦 → ∃𝑓∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧))) | |
18 | 12, 16, 17 | mpsyl 66 | . . . 4 ⊢ (∀𝑥∃𝑟 𝑟 We 𝑥 → ∃𝑓∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) |
19 | 18 | alrimiv 1842 | . . 3 ⊢ (∀𝑥∃𝑟 𝑟 We 𝑥 → ∀𝑦∃𝑓∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) |
20 | 11, 19 | impbii 198 | . 2 ⊢ (∀𝑦∃𝑓∀𝑧 ∈ 𝑦 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ↔ ∀𝑥∃𝑟 𝑟 We 𝑥) |
21 | 1, 20 | bitri 263 | 1 ⊢ (CHOICE ↔ ∀𝑥∃𝑟 𝑟 We 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∀wal 1473 = wceq 1475 ∃wex 1695 ∈ wcel 1977 ≠ wne 2780 ∀wral 2896 Vcvv 3173 ∅c0 3874 𝒫 cpw 4108 ∪ cuni 4372 We wwe 4996 dom cdm 5038 ‘cfv 5804 cardccrd 8644 CHOICEwac 8821 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-se 4998 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-isom 5813 df-riota 6511 df-wrecs 7294 df-recs 7355 df-en 7842 df-card 8648 df-ac 8822 |
This theorem is referenced by: dfac10 8842 weth 9200 dfac11 36650 |
Copyright terms: Public domain | W3C validator |