MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac8 Structured version   Visualization version   GIF version

Theorem dfac8 8840
Description: A proof of the equivalency of the Well Ordering Theorem weth 9200 and the Axiom of Choice ac7 9178. (Contributed by Mario Carneiro, 5-Jan-2013.)
Assertion
Ref Expression
dfac8 (CHOICE ↔ ∀𝑥𝑟 𝑟 We 𝑥)
Distinct variable group:   𝑥,𝑟

Proof of Theorem dfac8
Dummy variables 𝑓 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfac3 8827 . 2 (CHOICE ↔ ∀𝑦𝑓𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
2 vex 3176 . . . . . 6 𝑥 ∈ V
3 vpwex 4775 . . . . . . 7 𝒫 𝑥 ∈ V
4 raleq 3115 . . . . . . . 8 (𝑦 = 𝒫 𝑥 → (∀𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ∀𝑧 ∈ 𝒫 𝑥(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
54exbidv 1837 . . . . . . 7 (𝑦 = 𝒫 𝑥 → (∃𝑓𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ∃𝑓𝑧 ∈ 𝒫 𝑥(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
63, 5spcv 3272 . . . . . 6 (∀𝑦𝑓𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ∃𝑓𝑧 ∈ 𝒫 𝑥(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
7 dfac8a 8736 . . . . . 6 (𝑥 ∈ V → (∃𝑓𝑧 ∈ 𝒫 𝑥(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → 𝑥 ∈ dom card))
82, 6, 7mpsyl 66 . . . . 5 (∀𝑦𝑓𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → 𝑥 ∈ dom card)
9 dfac8b 8737 . . . . 5 (𝑥 ∈ dom card → ∃𝑟 𝑟 We 𝑥)
108, 9syl 17 . . . 4 (∀𝑦𝑓𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ∃𝑟 𝑟 We 𝑥)
1110alrimiv 1842 . . 3 (∀𝑦𝑓𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ∀𝑥𝑟 𝑟 We 𝑥)
12 vex 3176 . . . . 5 𝑦 ∈ V
13 vuniex 6852 . . . . . 6 𝑦 ∈ V
14 weeq2 5027 . . . . . . 7 (𝑥 = 𝑦 → (𝑟 We 𝑥𝑟 We 𝑦))
1514exbidv 1837 . . . . . 6 (𝑥 = 𝑦 → (∃𝑟 𝑟 We 𝑥 ↔ ∃𝑟 𝑟 We 𝑦))
1613, 15spcv 3272 . . . . 5 (∀𝑥𝑟 𝑟 We 𝑥 → ∃𝑟 𝑟 We 𝑦)
17 dfac8c 8739 . . . . 5 (𝑦 ∈ V → (∃𝑟 𝑟 We 𝑦 → ∃𝑓𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
1812, 16, 17mpsyl 66 . . . 4 (∀𝑥𝑟 𝑟 We 𝑥 → ∃𝑓𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
1918alrimiv 1842 . . 3 (∀𝑥𝑟 𝑟 We 𝑥 → ∀𝑦𝑓𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
2011, 19impbii 198 . 2 (∀𝑦𝑓𝑧𝑦 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ∀𝑥𝑟 𝑟 We 𝑥)
211, 20bitri 263 1 (CHOICE ↔ ∀𝑥𝑟 𝑟 We 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wal 1473   = wceq 1475  wex 1695  wcel 1977  wne 2780  wral 2896  Vcvv 3173  c0 3874  𝒫 cpw 4108   cuni 4372   We wwe 4996  dom cdm 5038  cfv 5804  cardccrd 8644  CHOICEwac 8821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-wrecs 7294  df-recs 7355  df-en 7842  df-card 8648  df-ac 8822
This theorem is referenced by:  dfac10  8842  weth  9200  dfac11  36650
  Copyright terms: Public domain W3C validator