MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac5lem3 Structured version   Visualization version   GIF version

Theorem dfac5lem3 8831
Description: Lemma for dfac5 8834. (Contributed by NM, 12-Apr-2004.)
Hypothesis
Ref Expression
dfac5lem.1 𝐴 = {𝑢 ∣ (𝑢 ≠ ∅ ∧ ∃𝑡 𝑢 = ({𝑡} × 𝑡))}
Assertion
Ref Expression
dfac5lem3 (({𝑤} × 𝑤) ∈ 𝐴 ↔ (𝑤 ≠ ∅ ∧ 𝑤))
Distinct variable groups:   𝑤,𝑢,𝑡,   𝑤,𝐴
Allowed substitution hints:   𝐴(𝑢,𝑡,)

Proof of Theorem dfac5lem3
StepHypRef Expression
1 snex 4835 . . . 4 {𝑤} ∈ V
2 vex 3176 . . . 4 𝑤 ∈ V
31, 2xpex 6860 . . 3 ({𝑤} × 𝑤) ∈ V
4 neeq1 2844 . . . 4 (𝑢 = ({𝑤} × 𝑤) → (𝑢 ≠ ∅ ↔ ({𝑤} × 𝑤) ≠ ∅))
5 eqeq1 2614 . . . . 5 (𝑢 = ({𝑤} × 𝑤) → (𝑢 = ({𝑡} × 𝑡) ↔ ({𝑤} × 𝑤) = ({𝑡} × 𝑡)))
65rexbidv 3034 . . . 4 (𝑢 = ({𝑤} × 𝑤) → (∃𝑡 𝑢 = ({𝑡} × 𝑡) ↔ ∃𝑡 ({𝑤} × 𝑤) = ({𝑡} × 𝑡)))
74, 6anbi12d 743 . . 3 (𝑢 = ({𝑤} × 𝑤) → ((𝑢 ≠ ∅ ∧ ∃𝑡 𝑢 = ({𝑡} × 𝑡)) ↔ (({𝑤} × 𝑤) ≠ ∅ ∧ ∃𝑡 ({𝑤} × 𝑤) = ({𝑡} × 𝑡))))
83, 7elab 3319 . 2 (({𝑤} × 𝑤) ∈ {𝑢 ∣ (𝑢 ≠ ∅ ∧ ∃𝑡 𝑢 = ({𝑡} × 𝑡))} ↔ (({𝑤} × 𝑤) ≠ ∅ ∧ ∃𝑡 ({𝑤} × 𝑤) = ({𝑡} × 𝑡)))
9 dfac5lem.1 . . 3 𝐴 = {𝑢 ∣ (𝑢 ≠ ∅ ∧ ∃𝑡 𝑢 = ({𝑡} × 𝑡))}
109eleq2i 2680 . 2 (({𝑤} × 𝑤) ∈ 𝐴 ↔ ({𝑤} × 𝑤) ∈ {𝑢 ∣ (𝑢 ≠ ∅ ∧ ∃𝑡 𝑢 = ({𝑡} × 𝑡))})
11 xpeq2 5053 . . . . . 6 (𝑤 = ∅ → ({𝑤} × 𝑤) = ({𝑤} × ∅))
12 xp0 5471 . . . . . 6 ({𝑤} × ∅) = ∅
1311, 12syl6eq 2660 . . . . 5 (𝑤 = ∅ → ({𝑤} × 𝑤) = ∅)
14 rneq 5272 . . . . . 6 (({𝑤} × 𝑤) = ∅ → ran ({𝑤} × 𝑤) = ran ∅)
152snnz 4252 . . . . . . 7 {𝑤} ≠ ∅
16 rnxp 5483 . . . . . . 7 ({𝑤} ≠ ∅ → ran ({𝑤} × 𝑤) = 𝑤)
1715, 16ax-mp 5 . . . . . 6 ran ({𝑤} × 𝑤) = 𝑤
18 rn0 5298 . . . . . 6 ran ∅ = ∅
1914, 17, 183eqtr3g 2667 . . . . 5 (({𝑤} × 𝑤) = ∅ → 𝑤 = ∅)
2013, 19impbii 198 . . . 4 (𝑤 = ∅ ↔ ({𝑤} × 𝑤) = ∅)
2120necon3bii 2834 . . 3 (𝑤 ≠ ∅ ↔ ({𝑤} × 𝑤) ≠ ∅)
22 df-rex 2902 . . . 4 (∃𝑡 ({𝑤} × 𝑤) = ({𝑡} × 𝑡) ↔ ∃𝑡(𝑡 ∧ ({𝑤} × 𝑤) = ({𝑡} × 𝑡)))
23 rneq 5272 . . . . . . . . . 10 (({𝑤} × 𝑤) = ({𝑡} × 𝑡) → ran ({𝑤} × 𝑤) = ran ({𝑡} × 𝑡))
24 vex 3176 . . . . . . . . . . . 12 𝑡 ∈ V
2524snnz 4252 . . . . . . . . . . 11 {𝑡} ≠ ∅
26 rnxp 5483 . . . . . . . . . . 11 ({𝑡} ≠ ∅ → ran ({𝑡} × 𝑡) = 𝑡)
2725, 26ax-mp 5 . . . . . . . . . 10 ran ({𝑡} × 𝑡) = 𝑡
2823, 17, 273eqtr3g 2667 . . . . . . . . 9 (({𝑤} × 𝑤) = ({𝑡} × 𝑡) → 𝑤 = 𝑡)
29 sneq 4135 . . . . . . . . . . 11 (𝑤 = 𝑡 → {𝑤} = {𝑡})
3029xpeq1d 5062 . . . . . . . . . 10 (𝑤 = 𝑡 → ({𝑤} × 𝑤) = ({𝑡} × 𝑤))
31 xpeq2 5053 . . . . . . . . . 10 (𝑤 = 𝑡 → ({𝑡} × 𝑤) = ({𝑡} × 𝑡))
3230, 31eqtrd 2644 . . . . . . . . 9 (𝑤 = 𝑡 → ({𝑤} × 𝑤) = ({𝑡} × 𝑡))
3328, 32impbii 198 . . . . . . . 8 (({𝑤} × 𝑤) = ({𝑡} × 𝑡) ↔ 𝑤 = 𝑡)
34 equcom 1932 . . . . . . . 8 (𝑤 = 𝑡𝑡 = 𝑤)
3533, 34bitri 263 . . . . . . 7 (({𝑤} × 𝑤) = ({𝑡} × 𝑡) ↔ 𝑡 = 𝑤)
3635anbi2i 726 . . . . . 6 ((𝑡 ∧ ({𝑤} × 𝑤) = ({𝑡} × 𝑡)) ↔ (𝑡𝑡 = 𝑤))
37 ancom 465 . . . . . 6 ((𝑡𝑡 = 𝑤) ↔ (𝑡 = 𝑤𝑡))
3836, 37bitri 263 . . . . 5 ((𝑡 ∧ ({𝑤} × 𝑤) = ({𝑡} × 𝑡)) ↔ (𝑡 = 𝑤𝑡))
3938exbii 1764 . . . 4 (∃𝑡(𝑡 ∧ ({𝑤} × 𝑤) = ({𝑡} × 𝑡)) ↔ ∃𝑡(𝑡 = 𝑤𝑡))
40 elequ1 1984 . . . . 5 (𝑡 = 𝑤 → (𝑡𝑤))
412, 40ceqsexv 3215 . . . 4 (∃𝑡(𝑡 = 𝑤𝑡) ↔ 𝑤)
4222, 39, 413bitrri 286 . . 3 (𝑤 ↔ ∃𝑡 ({𝑤} × 𝑤) = ({𝑡} × 𝑡))
4321, 42anbi12i 729 . 2 ((𝑤 ≠ ∅ ∧ 𝑤) ↔ (({𝑤} × 𝑤) ≠ ∅ ∧ ∃𝑡 ({𝑤} × 𝑤) = ({𝑡} × 𝑡)))
448, 10, 433bitr4i 291 1 (({𝑤} × 𝑤) ∈ 𝐴 ↔ (𝑤 ≠ ∅ ∧ 𝑤))
Colors of variables: wff setvar class
Syntax hints:  wb 195  wa 383   = wceq 1475  wex 1695  wcel 1977  {cab 2596  wne 2780  wrex 2897  c0 3874  {csn 4125   × cxp 5036  ran crn 5039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-xp 5044  df-rel 5045  df-cnv 5046  df-dm 5048  df-rn 5049
This theorem is referenced by:  dfac5lem5  8833
  Copyright terms: Public domain W3C validator