MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac5lem1 Structured version   Visualization version   GIF version

Theorem dfac5lem1 8829
Description: Lemma for dfac5 8834. (Contributed by NM, 12-Apr-2004.)
Assertion
Ref Expression
dfac5lem1 (∃!𝑣 𝑣 ∈ (({𝑤} × 𝑤) ∩ 𝑦) ↔ ∃!𝑔(𝑔𝑤 ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦))
Distinct variable group:   𝑤,𝑣,𝑦,𝑔

Proof of Theorem dfac5lem1
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 elin 3758 . . . 4 (𝑣 ∈ (({𝑤} × 𝑤) ∩ 𝑦) ↔ (𝑣 ∈ ({𝑤} × 𝑤) ∧ 𝑣𝑦))
2 elxp 5055 . . . . . 6 (𝑣 ∈ ({𝑤} × 𝑤) ↔ ∃𝑡𝑔(𝑣 = ⟨𝑡, 𝑔⟩ ∧ (𝑡 ∈ {𝑤} ∧ 𝑔𝑤)))
3 excom 2029 . . . . . 6 (∃𝑡𝑔(𝑣 = ⟨𝑡, 𝑔⟩ ∧ (𝑡 ∈ {𝑤} ∧ 𝑔𝑤)) ↔ ∃𝑔𝑡(𝑣 = ⟨𝑡, 𝑔⟩ ∧ (𝑡 ∈ {𝑤} ∧ 𝑔𝑤)))
42, 3bitri 263 . . . . 5 (𝑣 ∈ ({𝑤} × 𝑤) ↔ ∃𝑔𝑡(𝑣 = ⟨𝑡, 𝑔⟩ ∧ (𝑡 ∈ {𝑤} ∧ 𝑔𝑤)))
54anbi1i 727 . . . 4 ((𝑣 ∈ ({𝑤} × 𝑤) ∧ 𝑣𝑦) ↔ (∃𝑔𝑡(𝑣 = ⟨𝑡, 𝑔⟩ ∧ (𝑡 ∈ {𝑤} ∧ 𝑔𝑤)) ∧ 𝑣𝑦))
6 19.41vv 1902 . . . . 5 (∃𝑔𝑡((𝑣 = ⟨𝑡, 𝑔⟩ ∧ (𝑡 ∈ {𝑤} ∧ 𝑔𝑤)) ∧ 𝑣𝑦) ↔ (∃𝑔𝑡(𝑣 = ⟨𝑡, 𝑔⟩ ∧ (𝑡 ∈ {𝑤} ∧ 𝑔𝑤)) ∧ 𝑣𝑦))
7 an32 835 . . . . . . . . 9 (((𝑣 = ⟨𝑡, 𝑔⟩ ∧ (𝑡 ∈ {𝑤} ∧ 𝑔𝑤)) ∧ 𝑣𝑦) ↔ ((𝑣 = ⟨𝑡, 𝑔⟩ ∧ 𝑣𝑦) ∧ (𝑡 ∈ {𝑤} ∧ 𝑔𝑤)))
8 eleq1 2676 . . . . . . . . . . 11 (𝑣 = ⟨𝑡, 𝑔⟩ → (𝑣𝑦 ↔ ⟨𝑡, 𝑔⟩ ∈ 𝑦))
98pm5.32i 667 . . . . . . . . . 10 ((𝑣 = ⟨𝑡, 𝑔⟩ ∧ 𝑣𝑦) ↔ (𝑣 = ⟨𝑡, 𝑔⟩ ∧ ⟨𝑡, 𝑔⟩ ∈ 𝑦))
10 velsn 4141 . . . . . . . . . . 11 (𝑡 ∈ {𝑤} ↔ 𝑡 = 𝑤)
1110anbi1i 727 . . . . . . . . . 10 ((𝑡 ∈ {𝑤} ∧ 𝑔𝑤) ↔ (𝑡 = 𝑤𝑔𝑤))
129, 11anbi12i 729 . . . . . . . . 9 (((𝑣 = ⟨𝑡, 𝑔⟩ ∧ 𝑣𝑦) ∧ (𝑡 ∈ {𝑤} ∧ 𝑔𝑤)) ↔ ((𝑣 = ⟨𝑡, 𝑔⟩ ∧ ⟨𝑡, 𝑔⟩ ∈ 𝑦) ∧ (𝑡 = 𝑤𝑔𝑤)))
13 an4 861 . . . . . . . . . 10 (((𝑣 = ⟨𝑡, 𝑔⟩ ∧ ⟨𝑡, 𝑔⟩ ∈ 𝑦) ∧ (𝑡 = 𝑤𝑔𝑤)) ↔ ((𝑣 = ⟨𝑡, 𝑔⟩ ∧ 𝑡 = 𝑤) ∧ (⟨𝑡, 𝑔⟩ ∈ 𝑦𝑔𝑤)))
14 ancom 465 . . . . . . . . . . 11 ((𝑣 = ⟨𝑡, 𝑔⟩ ∧ 𝑡 = 𝑤) ↔ (𝑡 = 𝑤𝑣 = ⟨𝑡, 𝑔⟩))
15 ancom 465 . . . . . . . . . . 11 ((⟨𝑡, 𝑔⟩ ∈ 𝑦𝑔𝑤) ↔ (𝑔𝑤 ∧ ⟨𝑡, 𝑔⟩ ∈ 𝑦))
1614, 15anbi12i 729 . . . . . . . . . 10 (((𝑣 = ⟨𝑡, 𝑔⟩ ∧ 𝑡 = 𝑤) ∧ (⟨𝑡, 𝑔⟩ ∈ 𝑦𝑔𝑤)) ↔ ((𝑡 = 𝑤𝑣 = ⟨𝑡, 𝑔⟩) ∧ (𝑔𝑤 ∧ ⟨𝑡, 𝑔⟩ ∈ 𝑦)))
17 anass 679 . . . . . . . . . 10 (((𝑡 = 𝑤𝑣 = ⟨𝑡, 𝑔⟩) ∧ (𝑔𝑤 ∧ ⟨𝑡, 𝑔⟩ ∈ 𝑦)) ↔ (𝑡 = 𝑤 ∧ (𝑣 = ⟨𝑡, 𝑔⟩ ∧ (𝑔𝑤 ∧ ⟨𝑡, 𝑔⟩ ∈ 𝑦))))
1813, 16, 173bitri 285 . . . . . . . . 9 (((𝑣 = ⟨𝑡, 𝑔⟩ ∧ ⟨𝑡, 𝑔⟩ ∈ 𝑦) ∧ (𝑡 = 𝑤𝑔𝑤)) ↔ (𝑡 = 𝑤 ∧ (𝑣 = ⟨𝑡, 𝑔⟩ ∧ (𝑔𝑤 ∧ ⟨𝑡, 𝑔⟩ ∈ 𝑦))))
197, 12, 183bitri 285 . . . . . . . 8 (((𝑣 = ⟨𝑡, 𝑔⟩ ∧ (𝑡 ∈ {𝑤} ∧ 𝑔𝑤)) ∧ 𝑣𝑦) ↔ (𝑡 = 𝑤 ∧ (𝑣 = ⟨𝑡, 𝑔⟩ ∧ (𝑔𝑤 ∧ ⟨𝑡, 𝑔⟩ ∈ 𝑦))))
2019exbii 1764 . . . . . . 7 (∃𝑡((𝑣 = ⟨𝑡, 𝑔⟩ ∧ (𝑡 ∈ {𝑤} ∧ 𝑔𝑤)) ∧ 𝑣𝑦) ↔ ∃𝑡(𝑡 = 𝑤 ∧ (𝑣 = ⟨𝑡, 𝑔⟩ ∧ (𝑔𝑤 ∧ ⟨𝑡, 𝑔⟩ ∈ 𝑦))))
21 vex 3176 . . . . . . . 8 𝑤 ∈ V
22 opeq1 4340 . . . . . . . . . 10 (𝑡 = 𝑤 → ⟨𝑡, 𝑔⟩ = ⟨𝑤, 𝑔⟩)
2322eqeq2d 2620 . . . . . . . . 9 (𝑡 = 𝑤 → (𝑣 = ⟨𝑡, 𝑔⟩ ↔ 𝑣 = ⟨𝑤, 𝑔⟩))
2422eleq1d 2672 . . . . . . . . . 10 (𝑡 = 𝑤 → (⟨𝑡, 𝑔⟩ ∈ 𝑦 ↔ ⟨𝑤, 𝑔⟩ ∈ 𝑦))
2524anbi2d 736 . . . . . . . . 9 (𝑡 = 𝑤 → ((𝑔𝑤 ∧ ⟨𝑡, 𝑔⟩ ∈ 𝑦) ↔ (𝑔𝑤 ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦)))
2623, 25anbi12d 743 . . . . . . . 8 (𝑡 = 𝑤 → ((𝑣 = ⟨𝑡, 𝑔⟩ ∧ (𝑔𝑤 ∧ ⟨𝑡, 𝑔⟩ ∈ 𝑦)) ↔ (𝑣 = ⟨𝑤, 𝑔⟩ ∧ (𝑔𝑤 ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦))))
2721, 26ceqsexv 3215 . . . . . . 7 (∃𝑡(𝑡 = 𝑤 ∧ (𝑣 = ⟨𝑡, 𝑔⟩ ∧ (𝑔𝑤 ∧ ⟨𝑡, 𝑔⟩ ∈ 𝑦))) ↔ (𝑣 = ⟨𝑤, 𝑔⟩ ∧ (𝑔𝑤 ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦)))
2820, 27bitri 263 . . . . . 6 (∃𝑡((𝑣 = ⟨𝑡, 𝑔⟩ ∧ (𝑡 ∈ {𝑤} ∧ 𝑔𝑤)) ∧ 𝑣𝑦) ↔ (𝑣 = ⟨𝑤, 𝑔⟩ ∧ (𝑔𝑤 ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦)))
2928exbii 1764 . . . . 5 (∃𝑔𝑡((𝑣 = ⟨𝑡, 𝑔⟩ ∧ (𝑡 ∈ {𝑤} ∧ 𝑔𝑤)) ∧ 𝑣𝑦) ↔ ∃𝑔(𝑣 = ⟨𝑤, 𝑔⟩ ∧ (𝑔𝑤 ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦)))
306, 29bitr3i 265 . . . 4 ((∃𝑔𝑡(𝑣 = ⟨𝑡, 𝑔⟩ ∧ (𝑡 ∈ {𝑤} ∧ 𝑔𝑤)) ∧ 𝑣𝑦) ↔ ∃𝑔(𝑣 = ⟨𝑤, 𝑔⟩ ∧ (𝑔𝑤 ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦)))
311, 5, 303bitri 285 . . 3 (𝑣 ∈ (({𝑤} × 𝑤) ∩ 𝑦) ↔ ∃𝑔(𝑣 = ⟨𝑤, 𝑔⟩ ∧ (𝑔𝑤 ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦)))
3231eubii 2480 . 2 (∃!𝑣 𝑣 ∈ (({𝑤} × 𝑤) ∩ 𝑦) ↔ ∃!𝑣𝑔(𝑣 = ⟨𝑤, 𝑔⟩ ∧ (𝑔𝑤 ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦)))
3321euop2 4899 . 2 (∃!𝑣𝑔(𝑣 = ⟨𝑤, 𝑔⟩ ∧ (𝑔𝑤 ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦)) ↔ ∃!𝑔(𝑔𝑤 ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦))
3432, 33bitri 263 1 (∃!𝑣 𝑣 ∈ (({𝑤} × 𝑤) ∩ 𝑦) ↔ ∃!𝑔(𝑔𝑤 ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wb 195  wa 383   = wceq 1475  wex 1695  wcel 1977  ∃!weu 2458  cin 3539  {csn 4125  cop 4131   × cxp 5036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-opab 4644  df-xp 5044
This theorem is referenced by:  dfac5lem5  8833
  Copyright terms: Public domain W3C validator