Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df3o3 Structured version   Visualization version   GIF version

Theorem df3o3 37343
 Description: Ordinal 3 , fully expanded. (Contributed by RP, 8-Jul-2021.)
Assertion
Ref Expression
df3o3 3𝑜 = {∅, {∅}, {∅, {∅}}}

Proof of Theorem df3o3
StepHypRef Expression
1 df-3o 7449 . 2 3𝑜 = suc 2𝑜
2 df2o2 7461 . . . 4 2𝑜 = {∅, {∅}}
32sneqi 4136 . . . 4 {2𝑜} = {{∅, {∅}}}
42, 3uneq12i 3727 . . 3 (2𝑜 ∪ {2𝑜}) = ({∅, {∅}} ∪ {{∅, {∅}}})
5 df-suc 5646 . . 3 suc 2𝑜 = (2𝑜 ∪ {2𝑜})
6 df-tp 4130 . . 3 {∅, {∅}, {∅, {∅}}} = ({∅, {∅}} ∪ {{∅, {∅}}})
74, 5, 63eqtr4i 2642 . 2 suc 2𝑜 = {∅, {∅}, {∅, {∅}}}
81, 7eqtri 2632 1 3𝑜 = {∅, {∅}, {∅, {∅}}}
 Colors of variables: wff setvar class Syntax hints:   = wceq 1475   ∪ cun 3538  ∅c0 3874  {csn 4125  {cpr 4127  {ctp 4129  suc csuc 5642  2𝑜c2o 7441  3𝑜c3o 7442 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-v 3175  df-dif 3543  df-un 3545  df-nul 3875  df-sn 4126  df-pr 4128  df-tp 4130  df-suc 5646  df-1o 7447  df-2o 7448  df-3o 7449 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator