MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-zeta Structured version   Visualization version   GIF version

Definition df-zeta 24540
Description: Define the Riemann zeta function. This definition uses a series expansion of the alternating zeta function ~? zetaalt that is convergent everywhere except 1, but going from the alternating zeta function to the regular zeta function requires dividing by 1 − 2↑(1 − 𝑠), which has zeroes other than 1. To extract the correct value of the zeta function at these points, we extend the divided alternating zeta function by continuity. (Contributed by Mario Carneiro, 18-Jul-2014.)
Assertion
Ref Expression
df-zeta ζ = (𝑓 ∈ ((ℂ ∖ {1})–cn→ℂ)∀𝑠 ∈ (ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1))))
Distinct variable group:   𝑓,𝑘,𝑛,𝑠

Detailed syntax breakdown of Definition df-zeta
StepHypRef Expression
1 czeta 24539 . 2 class ζ
2 c1 9816 . . . . . . 7 class 1
3 c2 10947 . . . . . . . 8 class 2
4 vs . . . . . . . . . 10 setvar 𝑠
54cv 1474 . . . . . . . . 9 class 𝑠
6 cmin 10145 . . . . . . . . 9 class
72, 5, 6co 6549 . . . . . . . 8 class (1 − 𝑠)
8 ccxp 24106 . . . . . . . 8 class 𝑐
93, 7, 8co 6549 . . . . . . 7 class (2↑𝑐(1 − 𝑠))
102, 9, 6co 6549 . . . . . 6 class (1 − (2↑𝑐(1 − 𝑠)))
11 vf . . . . . . . 8 setvar 𝑓
1211cv 1474 . . . . . . 7 class 𝑓
135, 12cfv 5804 . . . . . 6 class (𝑓𝑠)
14 cmul 9820 . . . . . 6 class ·
1510, 13, 14co 6549 . . . . 5 class ((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠))
16 cn0 11169 . . . . . 6 class 0
17 cc0 9815 . . . . . . . . 9 class 0
18 vn . . . . . . . . . 10 setvar 𝑛
1918cv 1474 . . . . . . . . 9 class 𝑛
20 cfz 12197 . . . . . . . . 9 class ...
2117, 19, 20co 6549 . . . . . . . 8 class (0...𝑛)
222cneg 10146 . . . . . . . . . . 11 class -1
23 vk . . . . . . . . . . . 12 setvar 𝑘
2423cv 1474 . . . . . . . . . . 11 class 𝑘
25 cexp 12722 . . . . . . . . . . 11 class
2622, 24, 25co 6549 . . . . . . . . . 10 class (-1↑𝑘)
27 cbc 12951 . . . . . . . . . . 11 class C
2819, 24, 27co 6549 . . . . . . . . . 10 class (𝑛C𝑘)
2926, 28, 14co 6549 . . . . . . . . 9 class ((-1↑𝑘) · (𝑛C𝑘))
30 caddc 9818 . . . . . . . . . . 11 class +
3124, 2, 30co 6549 . . . . . . . . . 10 class (𝑘 + 1)
3231, 5, 8co 6549 . . . . . . . . 9 class ((𝑘 + 1)↑𝑐𝑠)
3329, 32, 14co 6549 . . . . . . . 8 class (((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠))
3421, 33, 23csu 14264 . . . . . . 7 class Σ𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠))
3519, 2, 30co 6549 . . . . . . . 8 class (𝑛 + 1)
363, 35, 25co 6549 . . . . . . 7 class (2↑(𝑛 + 1))
37 cdiv 10563 . . . . . . 7 class /
3834, 36, 37co 6549 . . . . . 6 class 𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))
3916, 38, 18csu 14264 . . . . 5 class Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))
4015, 39wceq 1475 . . . 4 wff ((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))
41 cc 9813 . . . . 5 class
422csn 4125 . . . . 5 class {1}
4341, 42cdif 3537 . . . 4 class (ℂ ∖ {1})
4440, 4, 43wral 2896 . . 3 wff 𝑠 ∈ (ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))
45 ccncf 22487 . . . 4 class cn
4643, 41, 45co 6549 . . 3 class ((ℂ ∖ {1})–cn→ℂ)
4744, 11, 46crio 6510 . 2 class (𝑓 ∈ ((ℂ ∖ {1})–cn→ℂ)∀𝑠 ∈ (ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1))))
481, 47wceq 1475 1 wff ζ = (𝑓 ∈ ((ℂ ∖ {1})–cn→ℂ)∀𝑠 ∈ (ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1))))
Colors of variables: wff setvar class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator