Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-wsuc | Structured version Visualization version GIF version |
Description: Define the concept of a successor in a well-founded set. (Contributed by Scott Fenton, 13-Jun-2018.) (Revised by AV, 10-Oct-2021.) |
Ref | Expression |
---|---|
df-wsuc | ⊢ wsuc(𝑅, 𝐴, 𝑋) = inf(Pred(◡𝑅, 𝐴, 𝑋), 𝐴, 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cR | . . 3 class 𝑅 | |
3 | cX | . . 3 class 𝑋 | |
4 | 1, 2, 3 | cwsuc 30996 | . 2 class wsuc(𝑅, 𝐴, 𝑋) |
5 | 2 | ccnv 5037 | . . . 4 class ◡𝑅 |
6 | 1, 5, 3 | cpred 5596 | . . 3 class Pred(◡𝑅, 𝐴, 𝑋) |
7 | 6, 1, 2 | cinf 8230 | . 2 class inf(Pred(◡𝑅, 𝐴, 𝑋), 𝐴, 𝑅) |
8 | 4, 7 | wceq 1475 | 1 wff wsuc(𝑅, 𝐴, 𝑋) = inf(Pred(◡𝑅, 𝐴, 𝑋), 𝐴, 𝑅) |
Colors of variables: wff setvar class |
This definition is referenced by: wsuceq123 31004 nfwsuc 31008 wsucex 31019 wsuccl 31020 wsuclb 31021 |
Copyright terms: Public domain | W3C validator |