Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-tc Structured version   Visualization version   GIF version

Definition df-tc 8496
 Description: The transitive closure function. (Contributed by Mario Carneiro, 23-Jun-2013.)
Assertion
Ref Expression
df-tc TC = (𝑥 ∈ V ↦ {𝑦 ∣ (𝑥𝑦 ∧ Tr 𝑦)})
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-tc
StepHypRef Expression
1 ctc 8495 . 2 class TC
2 vx . . 3 setvar 𝑥
3 cvv 3173 . . 3 class V
42cv 1474 . . . . . . 7 class 𝑥
5 vy . . . . . . . 8 setvar 𝑦
65cv 1474 . . . . . . 7 class 𝑦
74, 6wss 3540 . . . . . 6 wff 𝑥𝑦
86wtr 4680 . . . . . 6 wff Tr 𝑦
97, 8wa 383 . . . . 5 wff (𝑥𝑦 ∧ Tr 𝑦)
109, 5cab 2596 . . . 4 class {𝑦 ∣ (𝑥𝑦 ∧ Tr 𝑦)}
1110cint 4410 . . 3 class {𝑦 ∣ (𝑥𝑦 ∧ Tr 𝑦)}
122, 3, 11cmpt 4643 . 2 class (𝑥 ∈ V ↦ {𝑦 ∣ (𝑥𝑦 ∧ Tr 𝑦)})
131, 12wceq 1475 1 wff TC = (𝑥 ∈ V ↦ {𝑦 ∣ (𝑥𝑦 ∧ Tr 𝑦)})
 Colors of variables: wff setvar class This definition is referenced by:  tcvalg  8497
 Copyright terms: Public domain W3C validator