Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-succf | Structured version Visualization version GIF version |
Description: Define the successor function. See brsuccf 31218 for its value. (Contributed by Scott Fenton, 14-Apr-2014.) |
Ref | Expression |
---|---|
df-succf | ⊢ Succ = (Cup ∘ ( I ⊗ Singleton)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csuccf 31124 | . 2 class Succ | |
2 | ccup 31122 | . . 3 class Cup | |
3 | cid 4948 | . . . 4 class I | |
4 | csingle 31114 | . . . 4 class Singleton | |
5 | 3, 4 | ctxp 31106 | . . 3 class ( I ⊗ Singleton) |
6 | 2, 5 | ccom 5042 | . 2 class (Cup ∘ ( I ⊗ Singleton)) |
7 | 1, 6 | wceq 1475 | 1 wff Succ = (Cup ∘ ( I ⊗ Singleton)) |
Colors of variables: wff setvar class |
This definition is referenced by: brsuccf 31218 |
Copyright terms: Public domain | W3C validator |