Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-image Structured version   Visualization version   GIF version

Definition df-image 31140
 Description: Define the image functor. This function takes a set 𝐴 to a function 𝑥 ↦ (𝐴 “ 𝑥), providing that the latter exists. See imageval 31207 for the derivation. (Contributed by Scott Fenton, 27-Mar-2014.)
Assertion
Ref Expression
df-image Image𝐴 = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ 𝐴) ⊗ V)))

Detailed syntax breakdown of Definition df-image
StepHypRef Expression
1 cA . . 3 class 𝐴
21cimage 31116 . 2 class Image𝐴
3 cvv 3173 . . . 4 class V
43, 3cxp 5036 . . 3 class (V × V)
5 cep 4947 . . . . . 6 class E
63, 5ctxp 31106 . . . . 5 class (V ⊗ E )
71ccnv 5037 . . . . . . 7 class 𝐴
85, 7ccom 5042 . . . . . 6 class ( E ∘ 𝐴)
98, 3ctxp 31106 . . . . 5 class (( E ∘ 𝐴) ⊗ V)
106, 9csymdif 3805 . . . 4 class ((V ⊗ E ) △ (( E ∘ 𝐴) ⊗ V))
1110crn 5039 . . 3 class ran ((V ⊗ E ) △ (( E ∘ 𝐴) ⊗ V))
124, 11cdif 3537 . 2 class ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ 𝐴) ⊗ V)))
132, 12wceq 1475 1 wff Image𝐴 = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ 𝐴) ⊗ V)))
 Colors of variables: wff setvar class This definition is referenced by:  brimage  31203  funimage  31205
 Copyright terms: Public domain W3C validator