Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-cup Structured version   Visualization version   GIF version

Definition df-cup 31145
Description: Define the little cup function. See brcup 31216 for its value. (Contributed by Scott Fenton, 14-Apr-2014.)
Assertion
Ref Expression
df-cup Cup = (((V × V) × V) ∖ ran ((V ⊗ E ) △ (((1st ∘ E ) ∪ (2nd ∘ E )) ⊗ V)))

Detailed syntax breakdown of Definition df-cup
StepHypRef Expression
1 ccup 31122 . 2 class Cup
2 cvv 3173 . . . . 5 class V
32, 2cxp 5036 . . . 4 class (V × V)
43, 2cxp 5036 . . 3 class ((V × V) × V)
5 cep 4947 . . . . . 6 class E
62, 5ctxp 31106 . . . . 5 class (V ⊗ E )
7 c1st 7057 . . . . . . . . 9 class 1st
87ccnv 5037 . . . . . . . 8 class 1st
98, 5ccom 5042 . . . . . . 7 class (1st ∘ E )
10 c2nd 7058 . . . . . . . . 9 class 2nd
1110ccnv 5037 . . . . . . . 8 class 2nd
1211, 5ccom 5042 . . . . . . 7 class (2nd ∘ E )
139, 12cun 3538 . . . . . 6 class ((1st ∘ E ) ∪ (2nd ∘ E ))
1413, 2ctxp 31106 . . . . 5 class (((1st ∘ E ) ∪ (2nd ∘ E )) ⊗ V)
156, 14csymdif 3805 . . . 4 class ((V ⊗ E ) △ (((1st ∘ E ) ∪ (2nd ∘ E )) ⊗ V))
1615crn 5039 . . 3 class ran ((V ⊗ E ) △ (((1st ∘ E ) ∪ (2nd ∘ E )) ⊗ V))
174, 16cdif 3537 . 2 class (((V × V) × V) ∖ ran ((V ⊗ E ) △ (((1st ∘ E ) ∪ (2nd ∘ E )) ⊗ V)))
181, 17wceq 1475 1 wff Cup = (((V × V) × V) ∖ ran ((V ⊗ E ) △ (((1st ∘ E ) ∪ (2nd ∘ E )) ⊗ V)))
Colors of variables: wff setvar class
This definition is referenced by:  brcup  31216
  Copyright terms: Public domain W3C validator