Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-css Structured version   Visualization version   GIF version

Definition df-css 19827
 Description: Define set of closed subspaces. (Contributed by NM, 7-Oct-2011.)
Assertion
Ref Expression
df-css CSubSp = ( ∈ V ↦ {𝑠𝑠 = ((ocv‘)‘((ocv‘)‘𝑠))})
Distinct variable group:   ,𝑠

Detailed syntax breakdown of Definition df-css
StepHypRef Expression
1 ccss 19824 . 2 class CSubSp
2 vh . . 3 setvar
3 cvv 3173 . . 3 class V
4 vs . . . . . 6 setvar 𝑠
54cv 1474 . . . . 5 class 𝑠
62cv 1474 . . . . . . . 8 class
7 cocv 19823 . . . . . . . 8 class ocv
86, 7cfv 5804 . . . . . . 7 class (ocv‘)
95, 8cfv 5804 . . . . . 6 class ((ocv‘)‘𝑠)
109, 8cfv 5804 . . . . 5 class ((ocv‘)‘((ocv‘)‘𝑠))
115, 10wceq 1475 . . . 4 wff 𝑠 = ((ocv‘)‘((ocv‘)‘𝑠))
1211, 4cab 2596 . . 3 class {𝑠𝑠 = ((ocv‘)‘((ocv‘)‘𝑠))}
132, 3, 12cmpt 4643 . 2 class ( ∈ V ↦ {𝑠𝑠 = ((ocv‘)‘((ocv‘)‘𝑠))})
141, 13wceq 1475 1 wff CSubSp = ( ∈ V ↦ {𝑠𝑠 = ((ocv‘)‘((ocv‘)‘𝑠))})
 Colors of variables: wff setvar class This definition is referenced by:  cssval  19845
 Copyright terms: Public domain W3C validator