Mathbox for David A. Wheeler < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-csc Structured version   Visualization version   GIF version

Definition df-csc 42285
 Description: Define the cosecant function. We define it this way for cmpt 4643, which requires the form (𝑥 ∈ 𝐴 ↦ 𝐵). The csc function is defined in ISO 80000-2:2009(E) operation 2-13.7 and "NIST Digital Library of Mathematical Functions" section on "Trigonometric Functions" http://dlmf.nist.gov/4.14 (Contributed by David A. Wheeler, 14-Mar-2014.)
Assertion
Ref Expression
df-csc csc = (𝑥 ∈ {𝑦 ∈ ℂ ∣ (sin‘𝑦) ≠ 0} ↦ (1 / (sin‘𝑥)))
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-csc
StepHypRef Expression
1 ccsc 42282 . 2 class csc
2 vx . . 3 setvar 𝑥
3 vy . . . . . . 7 setvar 𝑦
43cv 1474 . . . . . 6 class 𝑦
5 csin 14633 . . . . . 6 class sin
64, 5cfv 5804 . . . . 5 class (sin‘𝑦)
7 cc0 9815 . . . . 5 class 0
86, 7wne 2780 . . . 4 wff (sin‘𝑦) ≠ 0
9 cc 9813 . . . 4 class
108, 3, 9crab 2900 . . 3 class {𝑦 ∈ ℂ ∣ (sin‘𝑦) ≠ 0}
11 c1 9816 . . . 4 class 1
122cv 1474 . . . . 5 class 𝑥
1312, 5cfv 5804 . . . 4 class (sin‘𝑥)
14 cdiv 10563 . . . 4 class /
1511, 13, 14co 6549 . . 3 class (1 / (sin‘𝑥))
162, 10, 15cmpt 4643 . 2 class (𝑥 ∈ {𝑦 ∈ ℂ ∣ (sin‘𝑦) ≠ 0} ↦ (1 / (sin‘𝑥)))
171, 16wceq 1475 1 wff csc = (𝑥 ∈ {𝑦 ∈ ℂ ∣ (sin‘𝑦) ≠ 0} ↦ (1 / (sin‘𝑥)))
 Colors of variables: wff setvar class This definition is referenced by:  cscval  42288
 Copyright terms: Public domain W3C validator