Detailed syntax breakdown of Definition df-catc
Step | Hyp | Ref
| Expression |
1 | | ccatc 16567 |
. 2
class
CatCat |
2 | | vu |
. . 3
setvar 𝑢 |
3 | | cvv 3173 |
. . 3
class
V |
4 | | vb |
. . . 4
setvar 𝑏 |
5 | 2 | cv 1474 |
. . . . 5
class 𝑢 |
6 | | ccat 16148 |
. . . . 5
class
Cat |
7 | 5, 6 | cin 3539 |
. . . 4
class (𝑢 ∩ Cat) |
8 | | cnx 15692 |
. . . . . . 7
class
ndx |
9 | | cbs 15695 |
. . . . . . 7
class
Base |
10 | 8, 9 | cfv 5804 |
. . . . . 6
class
(Base‘ndx) |
11 | 4 | cv 1474 |
. . . . . 6
class 𝑏 |
12 | 10, 11 | cop 4131 |
. . . . 5
class
〈(Base‘ndx), 𝑏〉 |
13 | | chom 15779 |
. . . . . . 7
class
Hom |
14 | 8, 13 | cfv 5804 |
. . . . . 6
class (Hom
‘ndx) |
15 | | vx |
. . . . . . 7
setvar 𝑥 |
16 | | vy |
. . . . . . 7
setvar 𝑦 |
17 | 15 | cv 1474 |
. . . . . . . 8
class 𝑥 |
18 | 16 | cv 1474 |
. . . . . . . 8
class 𝑦 |
19 | | cfunc 16337 |
. . . . . . . 8
class
Func |
20 | 17, 18, 19 | co 6549 |
. . . . . . 7
class (𝑥 Func 𝑦) |
21 | 15, 16, 11, 11, 20 | cmpt2 6551 |
. . . . . 6
class (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 Func 𝑦)) |
22 | 14, 21 | cop 4131 |
. . . . 5
class
〈(Hom ‘ndx), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 Func 𝑦))〉 |
23 | | cco 15780 |
. . . . . . 7
class
comp |
24 | 8, 23 | cfv 5804 |
. . . . . 6
class
(comp‘ndx) |
25 | | vv |
. . . . . . 7
setvar 𝑣 |
26 | | vz |
. . . . . . 7
setvar 𝑧 |
27 | 11, 11 | cxp 5036 |
. . . . . . 7
class (𝑏 × 𝑏) |
28 | | vg |
. . . . . . . 8
setvar 𝑔 |
29 | | vf |
. . . . . . . 8
setvar 𝑓 |
30 | 25 | cv 1474 |
. . . . . . . . . 10
class 𝑣 |
31 | | c2nd 7058 |
. . . . . . . . . 10
class
2nd |
32 | 30, 31 | cfv 5804 |
. . . . . . . . 9
class
(2nd ‘𝑣) |
33 | 26 | cv 1474 |
. . . . . . . . 9
class 𝑧 |
34 | 32, 33, 19 | co 6549 |
. . . . . . . 8
class
((2nd ‘𝑣) Func 𝑧) |
35 | 30, 19 | cfv 5804 |
. . . . . . . 8
class ( Func
‘𝑣) |
36 | 28 | cv 1474 |
. . . . . . . . 9
class 𝑔 |
37 | 29 | cv 1474 |
. . . . . . . . 9
class 𝑓 |
38 | | ccofu 16339 |
. . . . . . . . 9
class
∘func |
39 | 36, 37, 38 | co 6549 |
. . . . . . . 8
class (𝑔 ∘func
𝑓) |
40 | 28, 29, 34, 35, 39 | cmpt2 6551 |
. . . . . . 7
class (𝑔 ∈ ((2nd
‘𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔 ∘func 𝑓)) |
41 | 25, 26, 27, 11, 40 | cmpt2 6551 |
. . . . . 6
class (𝑣 ∈ (𝑏 × 𝑏), 𝑧 ∈ 𝑏 ↦ (𝑔 ∈ ((2nd ‘𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔 ∘func 𝑓))) |
42 | 24, 41 | cop 4131 |
. . . . 5
class
〈(comp‘ndx), (𝑣 ∈ (𝑏 × 𝑏), 𝑧 ∈ 𝑏 ↦ (𝑔 ∈ ((2nd ‘𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔 ∘func 𝑓)))〉 |
43 | 12, 22, 42 | ctp 4129 |
. . . 4
class
{〈(Base‘ndx), 𝑏〉, 〈(Hom ‘ndx), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 Func 𝑦))〉, 〈(comp‘ndx), (𝑣 ∈ (𝑏 × 𝑏), 𝑧 ∈ 𝑏 ↦ (𝑔 ∈ ((2nd ‘𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔 ∘func 𝑓)))〉} |
44 | 4, 7, 43 | csb 3499 |
. . 3
class
⦋(𝑢
∩ Cat) / 𝑏⦌{〈(Base‘ndx), 𝑏〉, 〈(Hom ‘ndx),
(𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 Func 𝑦))〉, 〈(comp‘ndx), (𝑣 ∈ (𝑏 × 𝑏), 𝑧 ∈ 𝑏 ↦ (𝑔 ∈ ((2nd ‘𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔 ∘func 𝑓)))〉} |
45 | 2, 3, 44 | cmpt 4643 |
. 2
class (𝑢 ∈ V ↦
⦋(𝑢 ∩
Cat) / 𝑏⦌{〈(Base‘ndx), 𝑏〉, 〈(Hom ‘ndx),
(𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 Func 𝑦))〉, 〈(comp‘ndx), (𝑣 ∈ (𝑏 × 𝑏), 𝑧 ∈ 𝑏 ↦ (𝑔 ∈ ((2nd ‘𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔 ∘func 𝑓)))〉}) |
46 | 1, 45 | wceq 1475 |
1
wff CatCat =
(𝑢 ∈ V ↦
⦋(𝑢 ∩
Cat) / 𝑏⦌{〈(Base‘ndx), 𝑏〉, 〈(Hom ‘ndx),
(𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 Func 𝑦))〉, 〈(comp‘ndx), (𝑣 ∈ (𝑏 × 𝑏), 𝑧 ∈ 𝑏 ↦ (𝑔 ∈ ((2nd ‘𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔 ∘func 𝑓)))〉}) |