Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  derangsn Structured version   Visualization version   GIF version

Theorem derangsn 30406
Description: The derangement number of a singleton. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypothesis
Ref Expression
derang.d 𝐷 = (𝑥 ∈ Fin ↦ (#‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
Assertion
Ref Expression
derangsn (𝐴𝑉 → (𝐷‘{𝐴}) = 0)
Distinct variable groups:   𝑥,𝑓,𝑦,𝐴   𝑓,𝑉
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑓)   𝑉(𝑥,𝑦)

Proof of Theorem derangsn
StepHypRef Expression
1 snfi 7923 . . . 4 {𝐴} ∈ Fin
2 derang.d . . . . 5 𝐷 = (𝑥 ∈ Fin ↦ (#‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
32derangval 30403 . . . 4 ({𝐴} ∈ Fin → (𝐷‘{𝐴}) = (#‘{𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)}))
41, 3ax-mp 5 . . 3 (𝐷‘{𝐴}) = (#‘{𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)})
5 f1of 6050 . . . . . . . . . 10 (𝑓:{𝐴}–1-1-onto→{𝐴} → 𝑓:{𝐴}⟶{𝐴})
65adantr 480 . . . . . . . . 9 ((𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦) → 𝑓:{𝐴}⟶{𝐴})
7 snidg 4153 . . . . . . . . 9 (𝐴𝑉𝐴 ∈ {𝐴})
8 ffvelrn 6265 . . . . . . . . 9 ((𝑓:{𝐴}⟶{𝐴} ∧ 𝐴 ∈ {𝐴}) → (𝑓𝐴) ∈ {𝐴})
96, 7, 8syl2anr 494 . . . . . . . 8 ((𝐴𝑉 ∧ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)) → (𝑓𝐴) ∈ {𝐴})
10 simpr 476 . . . . . . . . . 10 ((𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦) → ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)
11 fveq2 6103 . . . . . . . . . . . 12 (𝑦 = 𝐴 → (𝑓𝑦) = (𝑓𝐴))
12 id 22 . . . . . . . . . . . 12 (𝑦 = 𝐴𝑦 = 𝐴)
1311, 12neeq12d 2843 . . . . . . . . . . 11 (𝑦 = 𝐴 → ((𝑓𝑦) ≠ 𝑦 ↔ (𝑓𝐴) ≠ 𝐴))
1413rspcva 3280 . . . . . . . . . 10 ((𝐴 ∈ {𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦) → (𝑓𝐴) ≠ 𝐴)
157, 10, 14syl2an 493 . . . . . . . . 9 ((𝐴𝑉 ∧ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)) → (𝑓𝐴) ≠ 𝐴)
16 nelsn 4159 . . . . . . . . 9 ((𝑓𝐴) ≠ 𝐴 → ¬ (𝑓𝐴) ∈ {𝐴})
1715, 16syl 17 . . . . . . . 8 ((𝐴𝑉 ∧ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)) → ¬ (𝑓𝐴) ∈ {𝐴})
189, 17pm2.21dd 185 . . . . . . 7 ((𝐴𝑉 ∧ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)) → 𝑓 ∈ ∅)
1918ex 449 . . . . . 6 (𝐴𝑉 → ((𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦) → 𝑓 ∈ ∅))
2019abssdv 3639 . . . . 5 (𝐴𝑉 → {𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)} ⊆ ∅)
21 ss0 3926 . . . . 5 ({𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)} ⊆ ∅ → {𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)} = ∅)
2220, 21syl 17 . . . 4 (𝐴𝑉 → {𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)} = ∅)
2322fveq2d 6107 . . 3 (𝐴𝑉 → (#‘{𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓𝑦) ≠ 𝑦)}) = (#‘∅))
244, 23syl5eq 2656 . 2 (𝐴𝑉 → (𝐷‘{𝐴}) = (#‘∅))
25 hash0 13019 . 2 (#‘∅) = 0
2624, 25syl6eq 2660 1 (𝐴𝑉 → (𝐷‘{𝐴}) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1475  wcel 1977  {cab 2596  wne 2780  wral 2896  wss 3540  c0 3874  {csn 4125  cmpt 4643  wf 5800  1-1-ontowf1o 5803  cfv 5804  Fincfn 7841  0cc0 9815  #chash 12979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-hash 12980
This theorem is referenced by:  subfac1  30414
  Copyright terms: Public domain W3C validator