Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > derangsn | Structured version Visualization version GIF version |
Description: The derangement number of a singleton. (Contributed by Mario Carneiro, 19-Jan-2015.) |
Ref | Expression |
---|---|
derang.d | ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (#‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) |
Ref | Expression |
---|---|
derangsn | ⊢ (𝐴 ∈ 𝑉 → (𝐷‘{𝐴}) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snfi 7923 | . . . 4 ⊢ {𝐴} ∈ Fin | |
2 | derang.d | . . . . 5 ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (#‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) | |
3 | 2 | derangval 30403 | . . . 4 ⊢ ({𝐴} ∈ Fin → (𝐷‘{𝐴}) = (#‘{𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦)})) |
4 | 1, 3 | ax-mp 5 | . . 3 ⊢ (𝐷‘{𝐴}) = (#‘{𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦)}) |
5 | f1of 6050 | . . . . . . . . . 10 ⊢ (𝑓:{𝐴}–1-1-onto→{𝐴} → 𝑓:{𝐴}⟶{𝐴}) | |
6 | 5 | adantr 480 | . . . . . . . . 9 ⊢ ((𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦) → 𝑓:{𝐴}⟶{𝐴}) |
7 | snidg 4153 | . . . . . . . . 9 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) | |
8 | ffvelrn 6265 | . . . . . . . . 9 ⊢ ((𝑓:{𝐴}⟶{𝐴} ∧ 𝐴 ∈ {𝐴}) → (𝑓‘𝐴) ∈ {𝐴}) | |
9 | 6, 7, 8 | syl2anr 494 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦)) → (𝑓‘𝐴) ∈ {𝐴}) |
10 | simpr 476 | . . . . . . . . . 10 ⊢ ((𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦) → ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦) | |
11 | fveq2 6103 | . . . . . . . . . . . 12 ⊢ (𝑦 = 𝐴 → (𝑓‘𝑦) = (𝑓‘𝐴)) | |
12 | id 22 | . . . . . . . . . . . 12 ⊢ (𝑦 = 𝐴 → 𝑦 = 𝐴) | |
13 | 11, 12 | neeq12d 2843 | . . . . . . . . . . 11 ⊢ (𝑦 = 𝐴 → ((𝑓‘𝑦) ≠ 𝑦 ↔ (𝑓‘𝐴) ≠ 𝐴)) |
14 | 13 | rspcva 3280 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ {𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦) → (𝑓‘𝐴) ≠ 𝐴) |
15 | 7, 10, 14 | syl2an 493 | . . . . . . . . 9 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦)) → (𝑓‘𝐴) ≠ 𝐴) |
16 | nelsn 4159 | . . . . . . . . 9 ⊢ ((𝑓‘𝐴) ≠ 𝐴 → ¬ (𝑓‘𝐴) ∈ {𝐴}) | |
17 | 15, 16 | syl 17 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦)) → ¬ (𝑓‘𝐴) ∈ {𝐴}) |
18 | 9, 17 | pm2.21dd 185 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦)) → 𝑓 ∈ ∅) |
19 | 18 | ex 449 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → ((𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦) → 𝑓 ∈ ∅)) |
20 | 19 | abssdv 3639 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → {𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦)} ⊆ ∅) |
21 | ss0 3926 | . . . . 5 ⊢ ({𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦)} ⊆ ∅ → {𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦)} = ∅) | |
22 | 20, 21 | syl 17 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦)} = ∅) |
23 | 22 | fveq2d 6107 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (#‘{𝑓 ∣ (𝑓:{𝐴}–1-1-onto→{𝐴} ∧ ∀𝑦 ∈ {𝐴} (𝑓‘𝑦) ≠ 𝑦)}) = (#‘∅)) |
24 | 4, 23 | syl5eq 2656 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐷‘{𝐴}) = (#‘∅)) |
25 | hash0 13019 | . 2 ⊢ (#‘∅) = 0 | |
26 | 24, 25 | syl6eq 2660 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐷‘{𝐴}) = 0) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 {cab 2596 ≠ wne 2780 ∀wral 2896 ⊆ wss 3540 ∅c0 3874 {csn 4125 ↦ cmpt 4643 ⟶wf 5800 –1-1-onto→wf1o 5803 ‘cfv 5804 Fincfn 7841 0cc0 9815 #chash 12979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-card 8648 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-n0 11170 df-z 11255 df-uz 11564 df-fz 12198 df-hash 12980 |
This theorem is referenced by: subfac1 30414 |
Copyright terms: Public domain | W3C validator |