Step | Hyp | Ref
| Expression |
1 | | deg1z.d |
. . . 4
⊢ 𝐷 = ( deg1
‘𝑅) |
2 | 1 | deg1fval 23644 |
. . 3
⊢ 𝐷 = (1𝑜 mDeg
𝑅) |
3 | | eqid 2610 |
. . 3
⊢
(1𝑜 mPoly 𝑅) = (1𝑜 mPoly 𝑅) |
4 | | deg1z.p |
. . . 4
⊢ 𝑃 = (Poly1‘𝑅) |
5 | | eqid 2610 |
. . . 4
⊢
(PwSer1‘𝑅) = (PwSer1‘𝑅) |
6 | | deg1nn0cl.b |
. . . 4
⊢ 𝐵 = (Base‘𝑃) |
7 | 4, 5, 6 | ply1bas 19386 |
. . 3
⊢ 𝐵 =
(Base‘(1𝑜 mPoly 𝑅)) |
8 | | deg1ldg.y |
. . 3
⊢ 𝑌 = (0g‘𝑅) |
9 | | psr1baslem 19376 |
. . 3
⊢
(ℕ0 ↑𝑚 1𝑜) =
{𝑐 ∈
(ℕ0 ↑𝑚 1𝑜) ∣
(◡𝑐 “ ℕ) ∈
Fin} |
10 | | tdeglem2 23625 |
. . 3
⊢ (𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅)) = (𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦
(ℂfld Σg 𝑎)) |
11 | | deg1z.z |
. . . 4
⊢ 0 =
(0g‘𝑃) |
12 | 3, 4, 11 | ply1mpl0 19446 |
. . 3
⊢ 0 =
(0g‘(1𝑜 mPoly 𝑅)) |
13 | 2, 3, 7, 8, 9, 10,
12 | mdegldg 23630 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → ∃𝑏 ∈ (ℕ0
↑𝑚 1𝑜)((𝐹‘𝑏) ≠ 𝑌 ∧ ((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏) = (𝐷‘𝐹))) |
14 | | deg1ldg.a |
. . . . . . . . . . 11
⊢ 𝐴 = (coe1‘𝐹) |
15 | 14 | fvcoe1 19398 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ 𝐵 ∧ 𝑏 ∈ (ℕ0
↑𝑚 1𝑜)) → (𝐹‘𝑏) = (𝐴‘(𝑏‘∅))) |
16 | 15 | 3ad2antl2 1217 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) ∧ 𝑏 ∈ (ℕ0
↑𝑚 1𝑜)) → (𝐹‘𝑏) = (𝐴‘(𝑏‘∅))) |
17 | | fveq1 6102 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑏 → (𝑎‘∅) = (𝑏‘∅)) |
18 | | eqid 2610 |
. . . . . . . . . . . 12
⊢ (𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅)) = (𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅)) |
19 | | fvex 6113 |
. . . . . . . . . . . 12
⊢ (𝑏‘∅) ∈
V |
20 | 17, 18, 19 | fvmpt 6191 |
. . . . . . . . . . 11
⊢ (𝑏 ∈ (ℕ0
↑𝑚 1𝑜) → ((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏) = (𝑏‘∅)) |
21 | 20 | fveq2d 6107 |
. . . . . . . . . 10
⊢ (𝑏 ∈ (ℕ0
↑𝑚 1𝑜) → (𝐴‘((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏)) = (𝐴‘(𝑏‘∅))) |
22 | 21 | adantl 481 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) ∧ 𝑏 ∈ (ℕ0
↑𝑚 1𝑜)) → (𝐴‘((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏)) = (𝐴‘(𝑏‘∅))) |
23 | 16, 22 | eqtr4d 2647 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) ∧ 𝑏 ∈ (ℕ0
↑𝑚 1𝑜)) → (𝐹‘𝑏) = (𝐴‘((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏))) |
24 | 23 | neeq1d 2841 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) ∧ 𝑏 ∈ (ℕ0
↑𝑚 1𝑜)) → ((𝐹‘𝑏) ≠ 𝑌 ↔ (𝐴‘((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏)) ≠ 𝑌)) |
25 | 24 | anbi1d 737 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) ∧ 𝑏 ∈ (ℕ0
↑𝑚 1𝑜)) → (((𝐹‘𝑏) ≠ 𝑌 ∧ ((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏) = (𝐷‘𝐹)) ↔ ((𝐴‘((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏)) ≠ 𝑌 ∧ ((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏) = (𝐷‘𝐹)))) |
26 | | ancom 465 |
. . . . . 6
⊢ (((𝐴‘((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏)) ≠ 𝑌 ∧ ((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏) = (𝐷‘𝐹)) ↔ (((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏) = (𝐷‘𝐹) ∧ (𝐴‘((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏)) ≠ 𝑌)) |
27 | 25, 26 | syl6bb 275 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) ∧ 𝑏 ∈ (ℕ0
↑𝑚 1𝑜)) → (((𝐹‘𝑏) ≠ 𝑌 ∧ ((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏) = (𝐷‘𝐹)) ↔ (((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏) = (𝐷‘𝐹) ∧ (𝐴‘((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏)) ≠ 𝑌))) |
28 | 27 | rexbidva 3031 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (∃𝑏 ∈ (ℕ0
↑𝑚 1𝑜)((𝐹‘𝑏) ≠ 𝑌 ∧ ((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏) = (𝐷‘𝐹)) ↔ ∃𝑏 ∈ (ℕ0
↑𝑚 1𝑜)(((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏) = (𝐷‘𝐹) ∧ (𝐴‘((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏)) ≠ 𝑌))) |
29 | | df1o2 7459 |
. . . . . 6
⊢
1𝑜 = {∅} |
30 | | nn0ex 11175 |
. . . . . 6
⊢
ℕ0 ∈ V |
31 | | 0ex 4718 |
. . . . . 6
⊢ ∅
∈ V |
32 | 29, 30, 31, 18 | mapsnf1o2 7791 |
. . . . 5
⊢ (𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅)):(ℕ0
↑𝑚 1𝑜)–1-1-onto→ℕ0 |
33 | | f1ofo 6057 |
. . . . 5
⊢ ((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅)):(ℕ0
↑𝑚 1𝑜)–1-1-onto→ℕ0 → (𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅)):(ℕ0
↑𝑚 1𝑜)–onto→ℕ0) |
34 | | eqeq1 2614 |
. . . . . . 7
⊢ (((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏) = 𝑑 → (((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏) = (𝐷‘𝐹) ↔ 𝑑 = (𝐷‘𝐹))) |
35 | | fveq2 6103 |
. . . . . . . 8
⊢ (((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏) = 𝑑 → (𝐴‘((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏)) = (𝐴‘𝑑)) |
36 | 35 | neeq1d 2841 |
. . . . . . 7
⊢ (((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏) = 𝑑 → ((𝐴‘((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏)) ≠ 𝑌 ↔ (𝐴‘𝑑) ≠ 𝑌)) |
37 | 34, 36 | anbi12d 743 |
. . . . . 6
⊢ (((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏) = 𝑑 → ((((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏) = (𝐷‘𝐹) ∧ (𝐴‘((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏)) ≠ 𝑌) ↔ (𝑑 = (𝐷‘𝐹) ∧ (𝐴‘𝑑) ≠ 𝑌))) |
38 | 37 | cbvexfo 6445 |
. . . . 5
⊢ ((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅)):(ℕ0
↑𝑚 1𝑜)–onto→ℕ0 → (∃𝑏 ∈ (ℕ0
↑𝑚 1𝑜)(((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏) = (𝐷‘𝐹) ∧ (𝐴‘((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏)) ≠ 𝑌) ↔ ∃𝑑 ∈ ℕ0 (𝑑 = (𝐷‘𝐹) ∧ (𝐴‘𝑑) ≠ 𝑌))) |
39 | 32, 33, 38 | mp2b 10 |
. . . 4
⊢
(∃𝑏 ∈
(ℕ0 ↑𝑚 1𝑜)(((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏) = (𝐷‘𝐹) ∧ (𝐴‘((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏)) ≠ 𝑌) ↔ ∃𝑑 ∈ ℕ0 (𝑑 = (𝐷‘𝐹) ∧ (𝐴‘𝑑) ≠ 𝑌)) |
40 | 28, 39 | syl6bb 275 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (∃𝑏 ∈ (ℕ0
↑𝑚 1𝑜)((𝐹‘𝑏) ≠ 𝑌 ∧ ((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏) = (𝐷‘𝐹)) ↔ ∃𝑑 ∈ ℕ0 (𝑑 = (𝐷‘𝐹) ∧ (𝐴‘𝑑) ≠ 𝑌))) |
41 | 1, 4, 11, 6 | deg1nn0cl 23652 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (𝐷‘𝐹) ∈
ℕ0) |
42 | | fveq2 6103 |
. . . . . 6
⊢ (𝑑 = (𝐷‘𝐹) → (𝐴‘𝑑) = (𝐴‘(𝐷‘𝐹))) |
43 | 42 | neeq1d 2841 |
. . . . 5
⊢ (𝑑 = (𝐷‘𝐹) → ((𝐴‘𝑑) ≠ 𝑌 ↔ (𝐴‘(𝐷‘𝐹)) ≠ 𝑌)) |
44 | 43 | ceqsrexv 3306 |
. . . 4
⊢ ((𝐷‘𝐹) ∈ ℕ0 →
(∃𝑑 ∈
ℕ0 (𝑑 =
(𝐷‘𝐹) ∧ (𝐴‘𝑑) ≠ 𝑌) ↔ (𝐴‘(𝐷‘𝐹)) ≠ 𝑌)) |
45 | 41, 44 | syl 17 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (∃𝑑 ∈ ℕ0
(𝑑 = (𝐷‘𝐹) ∧ (𝐴‘𝑑) ≠ 𝑌) ↔ (𝐴‘(𝐷‘𝐹)) ≠ 𝑌)) |
46 | 40, 45 | bitrd 267 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (∃𝑏 ∈ (ℕ0
↑𝑚 1𝑜)((𝐹‘𝑏) ≠ 𝑌 ∧ ((𝑎 ∈ (ℕ0
↑𝑚 1𝑜) ↦ (𝑎‘∅))‘𝑏) = (𝐷‘𝐹)) ↔ (𝐴‘(𝐷‘𝐹)) ≠ 𝑌)) |
47 | 13, 46 | mpbid 221 |
1
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (𝐴‘(𝐷‘𝐹)) ≠ 𝑌) |