Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > decrmanc | Structured version Visualization version GIF version |
Description: Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (no carry). (Contributed by AV, 16-Sep-2021.) |
Ref | Expression |
---|---|
decrmanc.a | ⊢ 𝐴 ∈ ℕ0 |
decrmanc.b | ⊢ 𝐵 ∈ ℕ0 |
decrmanc.n | ⊢ 𝑁 ∈ ℕ0 |
decrmanc.m | ⊢ 𝑀 = ;𝐴𝐵 |
decrmanc.p | ⊢ 𝑃 ∈ ℕ0 |
decrmanc.e | ⊢ (𝐴 · 𝑃) = 𝐸 |
decrmanc.f | ⊢ ((𝐵 · 𝑃) + 𝑁) = 𝐹 |
Ref | Expression |
---|---|
decrmanc | ⊢ ((𝑀 · 𝑃) + 𝑁) = ;𝐸𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | decrmanc.a | . 2 ⊢ 𝐴 ∈ ℕ0 | |
2 | decrmanc.b | . 2 ⊢ 𝐵 ∈ ℕ0 | |
3 | 0nn0 11184 | . 2 ⊢ 0 ∈ ℕ0 | |
4 | decrmanc.n | . 2 ⊢ 𝑁 ∈ ℕ0 | |
5 | decrmanc.m | . 2 ⊢ 𝑀 = ;𝐴𝐵 | |
6 | 4 | dec0h 11398 | . 2 ⊢ 𝑁 = ;0𝑁 |
7 | decrmanc.p | . 2 ⊢ 𝑃 ∈ ℕ0 | |
8 | 1, 7 | nn0mulcli 11208 | . . . . 5 ⊢ (𝐴 · 𝑃) ∈ ℕ0 |
9 | 8 | nn0cni 11181 | . . . 4 ⊢ (𝐴 · 𝑃) ∈ ℂ |
10 | 9 | addid1i 10102 | . . 3 ⊢ ((𝐴 · 𝑃) + 0) = (𝐴 · 𝑃) |
11 | decrmanc.e | . . 3 ⊢ (𝐴 · 𝑃) = 𝐸 | |
12 | 10, 11 | eqtri 2632 | . 2 ⊢ ((𝐴 · 𝑃) + 0) = 𝐸 |
13 | decrmanc.f | . 2 ⊢ ((𝐵 · 𝑃) + 𝑁) = 𝐹 | |
14 | 1, 2, 3, 4, 5, 6, 7, 12, 13 | decma 11440 | 1 ⊢ ((𝑀 · 𝑃) + 𝑁) = ;𝐸𝐹 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1475 ∈ wcel 1977 (class class class)co 6549 0cc0 9815 + caddc 9818 · cmul 9820 ℕ0cn0 11169 ;cdc 11369 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-ov 6552 df-om 6958 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-ltxr 9958 df-nn 10898 df-2 10956 df-3 10957 df-4 10958 df-5 10959 df-6 10960 df-7 10961 df-8 10962 df-9 10963 df-n0 11170 df-dec 11370 |
This theorem is referenced by: 37prm 15666 2503lem1 15682 4001lem1 15686 4001lem2 15687 4001lem3 15688 log2ub 24476 |
Copyright terms: Public domain | W3C validator |