Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dec10OLD Structured version   Visualization version   GIF version

Theorem dec10OLD 11431
 Description: The decimal form of 10. NB: In our presentations of large numbers later on, we will use our symbol for 10 at the highest digits when advantageous, because we can use this theorem to convert back to "long form" (where each digit is in the range 0-9) with no extra effort. However, we cannot do this for lower digits while maintaining the ease of use of the decimal system, since it requires nontrivial number knowledge (more than just equality theorems) to convert back. (Contributed by Mario Carneiro, 18-Feb-2014.) Obsolete as of 6-Sep-2021, because the symbol 10 will be removed, and ;10 will be used instead in general. (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
dec10OLD 10 = 10

Proof of Theorem dec10OLD
StepHypRef Expression
1 10nnOLD 11070 . . . 4 10 ∈ ℕ
21nncni 10907 . . 3 10 ∈ ℂ
32addid1i 10102 . 2 (10 + 0) = 10
4 dec10pOLD 11430 . 2 (10 + 0) = 10
53, 4eqtr3i 2634 1 10 = 10
 Colors of variables: wff setvar class Syntax hints:   = wceq 1475  (class class class)co 6549  0cc0 9815  1c1 9816   + caddc 9818  10c10 10955  ;cdc 11369 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-ltxr 9958  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-10OLD 10964  df-dec 11370 This theorem is referenced by:  9p1e10bOLD  11432  decaddc2OLD  11450  decaddci2OLD  11458  5p5e10bOLD  11473  6p4e10bOLD  11475  6p5e11OLD  11477  7p3e10bOLD  11480  7p4e11OLD  11482  8p2e10bOLD  11487  8p3e11OLD  11489  9p2e11OLD  11496  10p10e20OLD  11505  sq10OLD  12913  dfpleOLD  15789  dfdp2OLD  42307
 Copyright terms: Public domain W3C validator