MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dcubic1 Structured version   Visualization version   GIF version

Theorem dcubic1 24372
Description: Forward direction of dcubic 24373: the claimed formula produces solutions to the cubic equation. (Contributed by Mario Carneiro, 25-Apr-2015.)
Hypotheses
Ref Expression
dcubic.c (𝜑𝑃 ∈ ℂ)
dcubic.d (𝜑𝑄 ∈ ℂ)
dcubic.x (𝜑𝑋 ∈ ℂ)
dcubic.t (𝜑𝑇 ∈ ℂ)
dcubic.3 (𝜑 → (𝑇↑3) = (𝐺𝑁))
dcubic.g (𝜑𝐺 ∈ ℂ)
dcubic.2 (𝜑 → (𝐺↑2) = ((𝑁↑2) + (𝑀↑3)))
dcubic.m (𝜑𝑀 = (𝑃 / 3))
dcubic.n (𝜑𝑁 = (𝑄 / 2))
dcubic.0 (𝜑𝑇 ≠ 0)
dcubic1.x (𝜑𝑋 = (𝑇 − (𝑀 / 𝑇)))
Assertion
Ref Expression
dcubic1 (𝜑 → ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0)

Proof of Theorem dcubic1
StepHypRef Expression
1 dcubic.3 . . . . . . 7 (𝜑 → (𝑇↑3) = (𝐺𝑁))
21oveq1d 6564 . . . . . 6 (𝜑 → ((𝑇↑3)↑2) = ((𝐺𝑁)↑2))
3 dcubic.g . . . . . . 7 (𝜑𝐺 ∈ ℂ)
4 dcubic.n . . . . . . . 8 (𝜑𝑁 = (𝑄 / 2))
5 dcubic.d . . . . . . . . 9 (𝜑𝑄 ∈ ℂ)
65halfcld 11154 . . . . . . . 8 (𝜑 → (𝑄 / 2) ∈ ℂ)
74, 6eqeltrd 2688 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
8 binom2sub 12843 . . . . . . 7 ((𝐺 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝐺𝑁)↑2) = (((𝐺↑2) − (2 · (𝐺 · 𝑁))) + (𝑁↑2)))
93, 7, 8syl2anc 691 . . . . . 6 (𝜑 → ((𝐺𝑁)↑2) = (((𝐺↑2) − (2 · (𝐺 · 𝑁))) + (𝑁↑2)))
10 dcubic.2 . . . . . . . 8 (𝜑 → (𝐺↑2) = ((𝑁↑2) + (𝑀↑3)))
11 2cnd 10970 . . . . . . . . . 10 (𝜑 → 2 ∈ ℂ)
1211, 3, 7mul12d 10124 . . . . . . . . 9 (𝜑 → (2 · (𝐺 · 𝑁)) = (𝐺 · (2 · 𝑁)))
134oveq2d 6565 . . . . . . . . . . 11 (𝜑 → (2 · 𝑁) = (2 · (𝑄 / 2)))
14 2ne0 10990 . . . . . . . . . . . . 13 2 ≠ 0
1514a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ≠ 0)
165, 11, 15divcan2d 10682 . . . . . . . . . . 11 (𝜑 → (2 · (𝑄 / 2)) = 𝑄)
1713, 16eqtrd 2644 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) = 𝑄)
1817oveq2d 6565 . . . . . . . . 9 (𝜑 → (𝐺 · (2 · 𝑁)) = (𝐺 · 𝑄))
193, 5mulcomd 9940 . . . . . . . . 9 (𝜑 → (𝐺 · 𝑄) = (𝑄 · 𝐺))
2012, 18, 193eqtrd 2648 . . . . . . . 8 (𝜑 → (2 · (𝐺 · 𝑁)) = (𝑄 · 𝐺))
2110, 20oveq12d 6567 . . . . . . 7 (𝜑 → ((𝐺↑2) − (2 · (𝐺 · 𝑁))) = (((𝑁↑2) + (𝑀↑3)) − (𝑄 · 𝐺)))
2221oveq1d 6564 . . . . . 6 (𝜑 → (((𝐺↑2) − (2 · (𝐺 · 𝑁))) + (𝑁↑2)) = ((((𝑁↑2) + (𝑀↑3)) − (𝑄 · 𝐺)) + (𝑁↑2)))
232, 9, 223eqtrd 2648 . . . . 5 (𝜑 → ((𝑇↑3)↑2) = ((((𝑁↑2) + (𝑀↑3)) − (𝑄 · 𝐺)) + (𝑁↑2)))
247sqcld 12868 . . . . . . 7 (𝜑 → (𝑁↑2) ∈ ℂ)
25 dcubic.m . . . . . . . . 9 (𝜑𝑀 = (𝑃 / 3))
26 dcubic.c . . . . . . . . . 10 (𝜑𝑃 ∈ ℂ)
27 3cn 10972 . . . . . . . . . . 11 3 ∈ ℂ
2827a1i 11 . . . . . . . . . 10 (𝜑 → 3 ∈ ℂ)
29 3ne0 10992 . . . . . . . . . . 11 3 ≠ 0
3029a1i 11 . . . . . . . . . 10 (𝜑 → 3 ≠ 0)
3126, 28, 30divcld 10680 . . . . . . . . 9 (𝜑 → (𝑃 / 3) ∈ ℂ)
3225, 31eqeltrd 2688 . . . . . . . 8 (𝜑𝑀 ∈ ℂ)
33 3nn0 11187 . . . . . . . 8 3 ∈ ℕ0
34 expcl 12740 . . . . . . . 8 ((𝑀 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝑀↑3) ∈ ℂ)
3532, 33, 34sylancl 693 . . . . . . 7 (𝜑 → (𝑀↑3) ∈ ℂ)
3624, 35addcld 9938 . . . . . 6 (𝜑 → ((𝑁↑2) + (𝑀↑3)) ∈ ℂ)
375, 3mulcld 9939 . . . . . 6 (𝜑 → (𝑄 · 𝐺) ∈ ℂ)
3836, 24, 37addsubd 10292 . . . . 5 (𝜑 → ((((𝑁↑2) + (𝑀↑3)) + (𝑁↑2)) − (𝑄 · 𝐺)) = ((((𝑁↑2) + (𝑀↑3)) − (𝑄 · 𝐺)) + (𝑁↑2)))
3924, 35, 24add32d 10142 . . . . . . 7 (𝜑 → (((𝑁↑2) + (𝑀↑3)) + (𝑁↑2)) = (((𝑁↑2) + (𝑁↑2)) + (𝑀↑3)))
40242timesd 11152 . . . . . . . 8 (𝜑 → (2 · (𝑁↑2)) = ((𝑁↑2) + (𝑁↑2)))
4140oveq1d 6564 . . . . . . 7 (𝜑 → ((2 · (𝑁↑2)) + (𝑀↑3)) = (((𝑁↑2) + (𝑁↑2)) + (𝑀↑3)))
4239, 41eqtr4d 2647 . . . . . 6 (𝜑 → (((𝑁↑2) + (𝑀↑3)) + (𝑁↑2)) = ((2 · (𝑁↑2)) + (𝑀↑3)))
4342oveq1d 6564 . . . . 5 (𝜑 → ((((𝑁↑2) + (𝑀↑3)) + (𝑁↑2)) − (𝑄 · 𝐺)) = (((2 · (𝑁↑2)) + (𝑀↑3)) − (𝑄 · 𝐺)))
4423, 38, 433eqtr2d 2650 . . . 4 (𝜑 → ((𝑇↑3)↑2) = (((2 · (𝑁↑2)) + (𝑀↑3)) − (𝑄 · 𝐺)))
455, 3, 7subdid 10365 . . . . . . 7 (𝜑 → (𝑄 · (𝐺𝑁)) = ((𝑄 · 𝐺) − (𝑄 · 𝑁)))
461oveq2d 6565 . . . . . . 7 (𝜑 → (𝑄 · (𝑇↑3)) = (𝑄 · (𝐺𝑁)))
477sqvald 12867 . . . . . . . . . 10 (𝜑 → (𝑁↑2) = (𝑁 · 𝑁))
4847oveq2d 6565 . . . . . . . . 9 (𝜑 → (2 · (𝑁↑2)) = (2 · (𝑁 · 𝑁)))
4911, 7, 7mulassd 9942 . . . . . . . . 9 (𝜑 → ((2 · 𝑁) · 𝑁) = (2 · (𝑁 · 𝑁)))
5017oveq1d 6564 . . . . . . . . 9 (𝜑 → ((2 · 𝑁) · 𝑁) = (𝑄 · 𝑁))
5148, 49, 503eqtr2d 2650 . . . . . . . 8 (𝜑 → (2 · (𝑁↑2)) = (𝑄 · 𝑁))
5251oveq2d 6565 . . . . . . 7 (𝜑 → ((𝑄 · 𝐺) − (2 · (𝑁↑2))) = ((𝑄 · 𝐺) − (𝑄 · 𝑁)))
5345, 46, 523eqtr4d 2654 . . . . . 6 (𝜑 → (𝑄 · (𝑇↑3)) = ((𝑄 · 𝐺) − (2 · (𝑁↑2))))
5453oveq1d 6564 . . . . 5 (𝜑 → ((𝑄 · (𝑇↑3)) − (𝑀↑3)) = (((𝑄 · 𝐺) − (2 · (𝑁↑2))) − (𝑀↑3)))
55 2cn 10968 . . . . . . 7 2 ∈ ℂ
56 mulcl 9899 . . . . . . 7 ((2 ∈ ℂ ∧ (𝑁↑2) ∈ ℂ) → (2 · (𝑁↑2)) ∈ ℂ)
5755, 24, 56sylancr 694 . . . . . 6 (𝜑 → (2 · (𝑁↑2)) ∈ ℂ)
5837, 57, 35subsub4d 10302 . . . . 5 (𝜑 → (((𝑄 · 𝐺) − (2 · (𝑁↑2))) − (𝑀↑3)) = ((𝑄 · 𝐺) − ((2 · (𝑁↑2)) + (𝑀↑3))))
5954, 58eqtrd 2644 . . . 4 (𝜑 → ((𝑄 · (𝑇↑3)) − (𝑀↑3)) = ((𝑄 · 𝐺) − ((2 · (𝑁↑2)) + (𝑀↑3))))
6044, 59oveq12d 6567 . . 3 (𝜑 → (((𝑇↑3)↑2) + ((𝑄 · (𝑇↑3)) − (𝑀↑3))) = ((((2 · (𝑁↑2)) + (𝑀↑3)) − (𝑄 · 𝐺)) + ((𝑄 · 𝐺) − ((2 · (𝑁↑2)) + (𝑀↑3)))))
6157, 35addcld 9938 . . . 4 (𝜑 → ((2 · (𝑁↑2)) + (𝑀↑3)) ∈ ℂ)
62 npncan2 10187 . . . 4 ((((2 · (𝑁↑2)) + (𝑀↑3)) ∈ ℂ ∧ (𝑄 · 𝐺) ∈ ℂ) → ((((2 · (𝑁↑2)) + (𝑀↑3)) − (𝑄 · 𝐺)) + ((𝑄 · 𝐺) − ((2 · (𝑁↑2)) + (𝑀↑3)))) = 0)
6361, 37, 62syl2anc 691 . . 3 (𝜑 → ((((2 · (𝑁↑2)) + (𝑀↑3)) − (𝑄 · 𝐺)) + ((𝑄 · 𝐺) − ((2 · (𝑁↑2)) + (𝑀↑3)))) = 0)
6460, 63eqtrd 2644 . 2 (𝜑 → (((𝑇↑3)↑2) + ((𝑄 · (𝑇↑3)) − (𝑀↑3))) = 0)
65 dcubic.x . . 3 (𝜑𝑋 ∈ ℂ)
66 dcubic.t . . 3 (𝜑𝑇 ∈ ℂ)
67 dcubic.0 . . 3 (𝜑𝑇 ≠ 0)
68 dcubic1.x . . 3 (𝜑𝑋 = (𝑇 − (𝑀 / 𝑇)))
6926, 5, 65, 66, 1, 3, 10, 25, 4, 67, 66, 67, 68dcubic1lem 24370 . 2 (𝜑 → (((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0 ↔ (((𝑇↑3)↑2) + ((𝑄 · (𝑇↑3)) − (𝑀↑3))) = 0))
7064, 69mpbird 246 1 (𝜑 → ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  wne 2780  (class class class)co 6549  cc 9813  0cc0 9815   + caddc 9818   · cmul 9820  cmin 10145   / cdiv 10563  2c2 10947  3c3 10948  0cn0 11169  cexp 12722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822
This theorem is referenced by:  dcubic  24373
  Copyright terms: Public domain W3C validator