Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrmusum2 Structured version   Visualization version   GIF version

Theorem dchrmusum2 24983
 Description: The sum of the Möbius function multiplied by a non-principal Dirichlet character, divided by 𝑛, is bounded, provided that 𝑇 ≠ 0. Lemma 9.4.2 of [Shapiro], p. 380. (Contributed by Mario Carneiro, 4-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.g 𝐺 = (DChr‘𝑁)
rpvmasum.d 𝐷 = (Base‘𝐺)
rpvmasum.1 1 = (0g𝐺)
dchrisum.b (𝜑𝑋𝐷)
dchrisum.n1 (𝜑𝑋1 )
dchrisumn0.f 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))
dchrisumn0.c (𝜑𝐶 ∈ (0[,)+∞))
dchrisumn0.t (𝜑 → seq1( + , 𝐹) ⇝ 𝑇)
dchrisumn0.1 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐶 / 𝑦))
Assertion
Ref Expression
dchrmusum2 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇)) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝑦, 1   𝑥,𝑑,𝑦,𝐶   𝐹,𝑑,𝑥,𝑦   𝑎,𝑑,𝑥,𝑦   𝑥,𝑁,𝑦   𝜑,𝑑,𝑥   𝑇,𝑑,𝑥,𝑦   𝑥,𝑍,𝑦   𝑥,𝐷,𝑦   𝐿,𝑎,𝑑,𝑥,𝑦   𝑋,𝑎,𝑑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑎)   𝐶(𝑎)   𝐷(𝑎,𝑑)   𝑇(𝑎)   1 (𝑎,𝑑)   𝐹(𝑎)   𝐺(𝑥,𝑦,𝑎,𝑑)   𝑁(𝑎,𝑑)   𝑍(𝑎,𝑑)

Proof of Theorem dchrmusum2
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpssre 11719 . . . 4 + ⊆ ℝ
2 ax-1cn 9873 . . . 4 1 ∈ ℂ
3 o1const 14198 . . . 4 ((ℝ+ ⊆ ℝ ∧ 1 ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ 1) ∈ 𝑂(1))
41, 2, 3mp2an 704 . . 3 (𝑥 ∈ ℝ+ ↦ 1) ∈ 𝑂(1)
54a1i 11 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ 1) ∈ 𝑂(1))
62a1i 11 . . 3 ((𝜑𝑥 ∈ ℝ+) → 1 ∈ ℂ)
7 fzfid 12634 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin)
8 rpvmasum.g . . . . . . 7 𝐺 = (DChr‘𝑁)
9 rpvmasum.z . . . . . . 7 𝑍 = (ℤ/nℤ‘𝑁)
10 rpvmasum.d . . . . . . 7 𝐷 = (Base‘𝐺)
11 rpvmasum.l . . . . . . 7 𝐿 = (ℤRHom‘𝑍)
12 dchrisum.b . . . . . . . 8 (𝜑𝑋𝐷)
1312ad2antrr 758 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑋𝐷)
14 elfzelz 12213 . . . . . . . 8 (𝑑 ∈ (1...(⌊‘𝑥)) → 𝑑 ∈ ℤ)
1514adantl 481 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℤ)
168, 9, 10, 11, 13, 15dchrzrhcl 24770 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑋‘(𝐿𝑑)) ∈ ℂ)
17 elfznn 12241 . . . . . . . . 9 (𝑑 ∈ (1...(⌊‘𝑥)) → 𝑑 ∈ ℕ)
1817adantl 481 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℕ)
19 mucl 24667 . . . . . . . . . 10 (𝑑 ∈ ℕ → (μ‘𝑑) ∈ ℤ)
2019zred 11358 . . . . . . . . 9 (𝑑 ∈ ℕ → (μ‘𝑑) ∈ ℝ)
21 nndivre 10933 . . . . . . . . 9 (((μ‘𝑑) ∈ ℝ ∧ 𝑑 ∈ ℕ) → ((μ‘𝑑) / 𝑑) ∈ ℝ)
2220, 21mpancom 700 . . . . . . . 8 (𝑑 ∈ ℕ → ((μ‘𝑑) / 𝑑) ∈ ℝ)
2318, 22syl 17 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑑) / 𝑑) ∈ ℝ)
2423recnd 9947 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑑) / 𝑑) ∈ ℂ)
2516, 24mulcld 9939 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) ∈ ℂ)
267, 25fsumcl 14311 . . . 4 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) ∈ ℂ)
27 dchrisumn0.t . . . . . 6 (𝜑 → seq1( + , 𝐹) ⇝ 𝑇)
28 climcl 14078 . . . . . 6 (seq1( + , 𝐹) ⇝ 𝑇𝑇 ∈ ℂ)
2927, 28syl 17 . . . . 5 (𝜑𝑇 ∈ ℂ)
3029adantr 480 . . . 4 ((𝜑𝑥 ∈ ℝ+) → 𝑇 ∈ ℂ)
3126, 30mulcld 9939 . . 3 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇) ∈ ℂ)
321a1i 11 . . . 4 (𝜑 → ℝ+ ⊆ ℝ)
33 subcl 10159 . . . . 5 ((1 ∈ ℂ ∧ (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇) ∈ ℂ) → (1 − (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇)) ∈ ℂ)
342, 31, 33sylancr 694 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (1 − (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇)) ∈ ℂ)
35 1red 9934 . . . 4 (𝜑 → 1 ∈ ℝ)
36 dchrisumn0.c . . . . . 6 (𝜑𝐶 ∈ (0[,)+∞))
37 elrege0 12149 . . . . . 6 (𝐶 ∈ (0[,)+∞) ↔ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
3836, 37sylib 207 . . . . 5 (𝜑 → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
3938simpld 474 . . . 4 (𝜑𝐶 ∈ ℝ)
40 fzfid 12634 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1...(⌊‘𝑥)) ∈ Fin)
4125adantlrr 753 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) ∈ ℂ)
42 nnuz 11599 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
43 1zzd 11285 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℤ)
4412adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ) → 𝑋𝐷)
45 nnz 11276 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
4645adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℤ)
478, 9, 10, 11, 44, 46dchrzrhcl 24770 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
48 nncn 10905 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
4948adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℂ)
50 nnne0 10930 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ → 𝑚 ≠ 0)
5150adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → 𝑚 ≠ 0)
5247, 49, 51divcld 10680 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → ((𝑋‘(𝐿𝑚)) / 𝑚) ∈ ℂ)
53 dchrisumn0.f . . . . . . . . . . . . . . 15 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))
54 fveq2 6103 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑚 → (𝐿𝑎) = (𝐿𝑚))
5554fveq2d 6107 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑚 → (𝑋‘(𝐿𝑎)) = (𝑋‘(𝐿𝑚)))
56 id 22 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑚𝑎 = 𝑚)
5755, 56oveq12d 6567 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑚 → ((𝑋‘(𝐿𝑎)) / 𝑎) = ((𝑋‘(𝐿𝑚)) / 𝑚))
5857cbvmptv 4678 . . . . . . . . . . . . . . 15 (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)) = (𝑚 ∈ ℕ ↦ ((𝑋‘(𝐿𝑚)) / 𝑚))
5953, 58eqtri 2632 . . . . . . . . . . . . . 14 𝐹 = (𝑚 ∈ ℕ ↦ ((𝑋‘(𝐿𝑚)) / 𝑚))
6052, 59fmptd 6292 . . . . . . . . . . . . 13 (𝜑𝐹:ℕ⟶ℂ)
6160ffvelrnda 6267 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (𝐹𝑚) ∈ ℂ)
6242, 43, 61serf 12691 . . . . . . . . . . 11 (𝜑 → seq1( + , 𝐹):ℕ⟶ℂ)
6362ad2antrr 758 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → seq1( + , 𝐹):ℕ⟶ℂ)
64 simprl 790 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ+)
6564rpred 11748 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ)
66 nndivre 10933 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑑 ∈ ℕ) → (𝑥 / 𝑑) ∈ ℝ)
6765, 17, 66syl2an 493 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑑) ∈ ℝ)
6817adantl 481 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℕ)
6968nncnd 10913 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℂ)
7069mulid2d 9937 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1 · 𝑑) = 𝑑)
71 fznnfl 12523 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → (𝑑 ∈ (1...(⌊‘𝑥)) ↔ (𝑑 ∈ ℕ ∧ 𝑑𝑥)))
7265, 71syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑑 ∈ (1...(⌊‘𝑥)) ↔ (𝑑 ∈ ℕ ∧ 𝑑𝑥)))
7372simplbda 652 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑𝑥)
7470, 73eqbrtrd 4605 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1 · 𝑑) ≤ 𝑥)
75 1red 9934 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ)
7665adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ)
7768nnrpd 11746 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℝ+)
7875, 76, 77lemuldivd 11797 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((1 · 𝑑) ≤ 𝑥 ↔ 1 ≤ (𝑥 / 𝑑)))
7974, 78mpbid 221 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 1 ≤ (𝑥 / 𝑑))
80 flge1nn 12484 . . . . . . . . . . 11 (((𝑥 / 𝑑) ∈ ℝ ∧ 1 ≤ (𝑥 / 𝑑)) → (⌊‘(𝑥 / 𝑑)) ∈ ℕ)
8167, 79, 80syl2anc 691 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (⌊‘(𝑥 / 𝑑)) ∈ ℕ)
8263, 81ffvelrnd 6268 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) ∈ ℂ)
8341, 82mulcld 9939 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑)))) ∈ ℂ)
8429ad2antrr 758 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑇 ∈ ℂ)
8541, 84mulcld 9939 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇) ∈ ℂ)
8640, 83, 85fsumsub 14362 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑑 ∈ (1...(⌊‘𝑥))((((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑)))) − (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇)) = (Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑)))) − Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇)))
8741, 82, 84subdid 10365 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇)) = ((((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑)))) − (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇)))
8887sumeq2dv 14281 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇)) = Σ𝑑 ∈ (1...(⌊‘𝑥))((((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑)))) − (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇)))
8912ad3antrrr 762 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑋𝐷)
9014ad2antlr 759 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑑 ∈ ℤ)
91 elfzelz 12213 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑))) → 𝑚 ∈ ℤ)
9291adantl 481 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑚 ∈ ℤ)
938, 9, 10, 11, 89, 90, 92dchrzrhmul 24771 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → (𝑋‘(𝐿‘(𝑑 · 𝑚))) = ((𝑋‘(𝐿𝑑)) · (𝑋‘(𝐿𝑚))))
9493oveq1d 6564 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚)) = (((𝑋‘(𝐿𝑑)) · (𝑋‘(𝐿𝑚))) / (𝑑 · 𝑚)))
9516adantlrr 753 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑋‘(𝐿𝑑)) ∈ ℂ)
9695adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → (𝑋‘(𝐿𝑑)) ∈ ℂ)
9769adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑑 ∈ ℂ)
988, 9, 10, 11, 89, 92dchrzrhcl 24770 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
99 elfznn 12241 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑))) → 𝑚 ∈ ℕ)
10099adantl 481 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑚 ∈ ℕ)
101100nncnd 10913 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑚 ∈ ℂ)
10268nnne0d 10942 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ≠ 0)
103102adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑑 ≠ 0)
104100nnne0d 10942 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → 𝑚 ≠ 0)
10596, 97, 98, 101, 103, 104divmuldivd 10721 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → (((𝑋‘(𝐿𝑑)) / 𝑑) · ((𝑋‘(𝐿𝑚)) / 𝑚)) = (((𝑋‘(𝐿𝑑)) · (𝑋‘(𝐿𝑚))) / (𝑑 · 𝑚)))
10694, 105eqtr4d 2647 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚)) = (((𝑋‘(𝐿𝑑)) / 𝑑) · ((𝑋‘(𝐿𝑚)) / 𝑚)))
107106oveq2d 6565 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((μ‘𝑑) · ((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚))) = ((μ‘𝑑) · (((𝑋‘(𝐿𝑑)) / 𝑑) · ((𝑋‘(𝐿𝑚)) / 𝑚))))
10868, 19syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (μ‘𝑑) ∈ ℤ)
109108zcnd 11359 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (μ‘𝑑) ∈ ℂ)
110109adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → (μ‘𝑑) ∈ ℂ)
11196, 97, 103divcld 10680 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((𝑋‘(𝐿𝑑)) / 𝑑) ∈ ℂ)
11298, 101, 104divcld 10680 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((𝑋‘(𝐿𝑚)) / 𝑚) ∈ ℂ)
113110, 111, 112mulassd 9942 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → (((μ‘𝑑) · ((𝑋‘(𝐿𝑑)) / 𝑑)) · ((𝑋‘(𝐿𝑚)) / 𝑚)) = ((μ‘𝑑) · (((𝑋‘(𝐿𝑑)) / 𝑑) · ((𝑋‘(𝐿𝑚)) / 𝑚))))
114110, 96, 97, 103div12d 10716 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((μ‘𝑑) · ((𝑋‘(𝐿𝑑)) / 𝑑)) = ((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)))
115114oveq1d 6564 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → (((μ‘𝑑) · ((𝑋‘(𝐿𝑑)) / 𝑑)) · ((𝑋‘(𝐿𝑚)) / 𝑚)) = (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((𝑋‘(𝐿𝑚)) / 𝑚)))
116107, 113, 1153eqtr2d 2650 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((μ‘𝑑) · ((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚))) = (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((𝑋‘(𝐿𝑚)) / 𝑚)))
117116sumeq2dv 14281 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚))) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((𝑋‘(𝐿𝑚)) / 𝑚)))
118 fzfid 12634 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1...(⌊‘(𝑥 / 𝑑))) ∈ Fin)
119 simpll 786 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝜑)
120119, 99, 52syl2an 493 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → ((𝑋‘(𝐿𝑚)) / 𝑚) ∈ ℂ)
121118, 41, 120fsummulc2 14358 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑚)) / 𝑚)) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((𝑋‘(𝐿𝑚)) / 𝑚)))
122 ovex 6577 . . . . . . . . . . . . . . . 16 ((𝑋‘(𝐿𝑚)) / 𝑚) ∈ V
12357, 53, 122fvmpt 6191 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ → (𝐹𝑚) = ((𝑋‘(𝐿𝑚)) / 𝑚))
124100, 123syl 17 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))) → (𝐹𝑚) = ((𝑋‘(𝐿𝑚)) / 𝑚))
12581, 42syl6eleq 2698 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (⌊‘(𝑥 / 𝑑)) ∈ (ℤ‘1))
126124, 125, 120fsumser 14308 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑚)) / 𝑚) = (seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))))
127126oveq2d 6565 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((𝑋‘(𝐿𝑚)) / 𝑚)) = (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑)))))
128117, 121, 1273eqtr2rd 2651 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑)))) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚))))
129128sumeq2dv 14281 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑)))) = Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚))))
130 fveq2 6103 . . . . . . . . . . . . . 14 (𝑛 = (𝑑 · 𝑚) → (𝐿𝑛) = (𝐿‘(𝑑 · 𝑚)))
131130fveq2d 6107 . . . . . . . . . . . . 13 (𝑛 = (𝑑 · 𝑚) → (𝑋‘(𝐿𝑛)) = (𝑋‘(𝐿‘(𝑑 · 𝑚))))
132 id 22 . . . . . . . . . . . . 13 (𝑛 = (𝑑 · 𝑚) → 𝑛 = (𝑑 · 𝑚))
133131, 132oveq12d 6567 . . . . . . . . . . . 12 (𝑛 = (𝑑 · 𝑚) → ((𝑋‘(𝐿𝑛)) / 𝑛) = ((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚)))
134133oveq2d 6565 . . . . . . . . . . 11 (𝑛 = (𝑑 · 𝑚) → ((μ‘𝑑) · ((𝑋‘(𝐿𝑛)) / 𝑛)) = ((μ‘𝑑) · ((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚))))
135 elrabi 3328 . . . . . . . . . . . . . . 15 (𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} → 𝑑 ∈ ℕ)
136135ad2antll 761 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → 𝑑 ∈ ℕ)
137136, 19syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → (μ‘𝑑) ∈ ℤ)
138137zcnd 11359 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → (μ‘𝑑) ∈ ℂ)
13912ad2antrr 758 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑋𝐷)
140 elfzelz 12213 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℤ)
141140adantl 481 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℤ)
1428, 9, 10, 11, 139, 141dchrzrhcl 24770 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑋‘(𝐿𝑛)) ∈ ℂ)
14317ssriv 3572 . . . . . . . . . . . . . . . . 17 (1...(⌊‘𝑥)) ⊆ ℕ
144143a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1...(⌊‘𝑥)) ⊆ ℕ)
145144sselda 3568 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
146145nncnd 10913 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℂ)
147145nnne0d 10942 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ≠ 0)
148142, 146, 147divcld 10680 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑋‘(𝐿𝑛)) / 𝑛) ∈ ℂ)
149148adantrr 749 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → ((𝑋‘(𝐿𝑛)) / 𝑛) ∈ ℂ)
150138, 149mulcld 9939 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → ((μ‘𝑑) · ((𝑋‘(𝐿𝑛)) / 𝑛)) ∈ ℂ)
151134, 65, 150dvdsflsumcom 24714 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((μ‘𝑑) · ((𝑋‘(𝐿𝑛)) / 𝑛)) = Σ𝑑 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑑)))((μ‘𝑑) · ((𝑋‘(𝐿‘(𝑑 · 𝑚))) / (𝑑 · 𝑚))))
152 fveq2 6103 . . . . . . . . . . . . 13 (𝑛 = 1 → (𝐿𝑛) = (𝐿‘1))
153152fveq2d 6107 . . . . . . . . . . . 12 (𝑛 = 1 → (𝑋‘(𝐿𝑛)) = (𝑋‘(𝐿‘1)))
154 id 22 . . . . . . . . . . . 12 (𝑛 = 1 → 𝑛 = 1)
155153, 154oveq12d 6567 . . . . . . . . . . 11 (𝑛 = 1 → ((𝑋‘(𝐿𝑛)) / 𝑛) = ((𝑋‘(𝐿‘1)) / 1))
156 simprr 792 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ≤ 𝑥)
157 flge1nn 12484 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ)
15865, 156, 157syl2anc 691 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (⌊‘𝑥) ∈ ℕ)
159158, 42syl6eleq 2698 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (⌊‘𝑥) ∈ (ℤ‘1))
160 eluzfz1 12219 . . . . . . . . . . . 12 ((⌊‘𝑥) ∈ (ℤ‘1) → 1 ∈ (1...(⌊‘𝑥)))
161159, 160syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ∈ (1...(⌊‘𝑥)))
162155, 40, 144, 161, 148musumsum 24718 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑑 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((μ‘𝑑) · ((𝑋‘(𝐿𝑛)) / 𝑛)) = ((𝑋‘(𝐿‘1)) / 1))
163129, 151, 1623eqtr2d 2650 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑)))) = ((𝑋‘(𝐿‘1)) / 1))
1648, 9, 10, 11, 12dchrzrh1 24769 . . . . . . . . . . . 12 (𝜑 → (𝑋‘(𝐿‘1)) = 1)
165164adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑋‘(𝐿‘1)) = 1)
166165oveq1d 6564 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((𝑋‘(𝐿‘1)) / 1) = (1 / 1))
167 1div1e1 10596 . . . . . . . . . 10 (1 / 1) = 1
168166, 167syl6eq 2660 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((𝑋‘(𝐿‘1)) / 1) = 1)
169163, 168eqtr2d 2645 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 = Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑)))))
17029adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑇 ∈ ℂ)
17140, 170, 41fsummulc1 14359 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇) = Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇))
172169, 171oveq12d 6567 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1 − (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇)) = (Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · (seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑)))) − Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇)))
17386, 88, 1723eqtr4rd 2655 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1 − (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇)) = Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇)))
174173fveq2d 6107 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(1 − (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇))) = (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇))))
17582, 84subcld 10271 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇) ∈ ℂ)
17641, 175mulcld 9939 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇)) ∈ ℂ)
17740, 176fsumcl 14311 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇)) ∈ ℂ)
178177abscld 14023 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇))) ∈ ℝ)
179176abscld 14023 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇))) ∈ ℝ)
18040, 179fsumrecl 14312 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑑 ∈ (1...(⌊‘𝑥))(abs‘(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇))) ∈ ℝ)
18139adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝐶 ∈ ℝ)
18240, 176fsumabs 14374 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇))) ≤ Σ𝑑 ∈ (1...(⌊‘𝑥))(abs‘(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇))))
183 reflcl 12459 . . . . . . . . . 10 (𝑥 ∈ ℝ → (⌊‘𝑥) ∈ ℝ)
18465, 183syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (⌊‘𝑥) ∈ ℝ)
185184, 181remulcld 9949 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((⌊‘𝑥) · 𝐶) ∈ ℝ)
186185, 64rerpdivcld 11779 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((⌊‘𝑥) · 𝐶) / 𝑥) ∈ ℝ)
187181, 64rerpdivcld 11779 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝐶 / 𝑥) ∈ ℝ)
188187adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 / 𝑥) ∈ ℝ)
18941abscld 14023 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑))) ∈ ℝ)
19068nnrecred 10943 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1 / 𝑑) ∈ ℝ)
191175abscld 14023 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇)) ∈ ℝ)
19277rpred 11748 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℝ)
193188, 192remulcld 9949 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((𝐶 / 𝑥) · 𝑑) ∈ ℝ)
19441absge0d 14031 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑))))
195175absge0d 14031 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇)))
19695abscld 14023 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑋‘(𝐿𝑑))) ∈ ℝ)
19724adantlrr 753 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑑) / 𝑑) ∈ ℂ)
198197abscld 14023 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((μ‘𝑑) / 𝑑)) ∈ ℝ)
19995absge0d 14031 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘(𝑋‘(𝐿𝑑))))
200197absge0d 14031 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘((μ‘𝑑) / 𝑑)))
201 eqid 2610 . . . . . . . . . . . . . 14 (Base‘𝑍) = (Base‘𝑍)
20212ad2antrr 758 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑋𝐷)
203 rpvmasum.a . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ ℕ)
204203nnnn0d 11228 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℕ0)
2059, 201, 11znzrhfo 19715 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0𝐿:ℤ–onto→(Base‘𝑍))
206 fof 6028 . . . . . . . . . . . . . . . . 17 (𝐿:ℤ–onto→(Base‘𝑍) → 𝐿:ℤ⟶(Base‘𝑍))
207204, 205, 2063syl 18 . . . . . . . . . . . . . . . 16 (𝜑𝐿:ℤ⟶(Base‘𝑍))
208207adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝐿:ℤ⟶(Base‘𝑍))
209 ffvelrn 6265 . . . . . . . . . . . . . . 15 ((𝐿:ℤ⟶(Base‘𝑍) ∧ 𝑑 ∈ ℤ) → (𝐿𝑑) ∈ (Base‘𝑍))
210208, 14, 209syl2an 493 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐿𝑑) ∈ (Base‘𝑍))
2118, 10, 9, 201, 202, 210dchrabs2 24787 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑋‘(𝐿𝑑))) ≤ 1)
212109, 69, 102absdivd 14042 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((μ‘𝑑) / 𝑑)) = ((abs‘(μ‘𝑑)) / (abs‘𝑑)))
21377rprege0d 11755 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑑 ∈ ℝ ∧ 0 ≤ 𝑑))
214 absid 13884 . . . . . . . . . . . . . . . . 17 ((𝑑 ∈ ℝ ∧ 0 ≤ 𝑑) → (abs‘𝑑) = 𝑑)
215213, 214syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘𝑑) = 𝑑)
216215oveq2d 6565 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((abs‘(μ‘𝑑)) / (abs‘𝑑)) = ((abs‘(μ‘𝑑)) / 𝑑))
217212, 216eqtrd 2644 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((μ‘𝑑) / 𝑑)) = ((abs‘(μ‘𝑑)) / 𝑑))
218109abscld 14023 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(μ‘𝑑)) ∈ ℝ)
219 mule1 24674 . . . . . . . . . . . . . . . 16 (𝑑 ∈ ℕ → (abs‘(μ‘𝑑)) ≤ 1)
22068, 219syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(μ‘𝑑)) ≤ 1)
221218, 75, 77, 220lediv1dd 11806 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((abs‘(μ‘𝑑)) / 𝑑) ≤ (1 / 𝑑))
222217, 221eqbrtrd 4605 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((μ‘𝑑) / 𝑑)) ≤ (1 / 𝑑))
223196, 75, 198, 190, 199, 200, 211, 222lemul12ad 10845 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑋‘(𝐿𝑑))) · (abs‘((μ‘𝑑) / 𝑑))) ≤ (1 · (1 / 𝑑)))
22495, 197absmuld 14041 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑))) = ((abs‘(𝑋‘(𝐿𝑑))) · (abs‘((μ‘𝑑) / 𝑑))))
225190recnd 9947 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1 / 𝑑) ∈ ℂ)
226225mulid2d 9937 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1 · (1 / 𝑑)) = (1 / 𝑑))
227226eqcomd 2616 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1 / 𝑑) = (1 · (1 / 𝑑)))
228223, 224, 2273brtr4d 4615 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑))) ≤ (1 / 𝑑))
229 1re 9918 . . . . . . . . . . . . . . 15 1 ∈ ℝ
230 elicopnf 12140 . . . . . . . . . . . . . . 15 (1 ∈ ℝ → ((𝑥 / 𝑑) ∈ (1[,)+∞) ↔ ((𝑥 / 𝑑) ∈ ℝ ∧ 1 ≤ (𝑥 / 𝑑))))
231229, 230ax-mp 5 . . . . . . . . . . . . . 14 ((𝑥 / 𝑑) ∈ (1[,)+∞) ↔ ((𝑥 / 𝑑) ∈ ℝ ∧ 1 ≤ (𝑥 / 𝑑)))
23267, 79, 231sylanbrc 695 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑑) ∈ (1[,)+∞))
233 dchrisumn0.1 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐶 / 𝑦))
234233ad2antrr 758 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐶 / 𝑦))
235 fveq2 6103 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝑥 / 𝑑) → (⌊‘𝑦) = (⌊‘(𝑥 / 𝑑)))
236235fveq2d 6107 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑥 / 𝑑) → (seq1( + , 𝐹)‘(⌊‘𝑦)) = (seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))))
237236oveq1d 6564 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑥 / 𝑑) → ((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑇) = ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇))
238237fveq2d 6107 . . . . . . . . . . . . . . 15 (𝑦 = (𝑥 / 𝑑) → (abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑇)) = (abs‘((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇)))
239 oveq2 6557 . . . . . . . . . . . . . . 15 (𝑦 = (𝑥 / 𝑑) → (𝐶 / 𝑦) = (𝐶 / (𝑥 / 𝑑)))
240238, 239breq12d 4596 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 / 𝑑) → ((abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐶 / 𝑦) ↔ (abs‘((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇)) ≤ (𝐶 / (𝑥 / 𝑑))))
241240rspcv 3278 . . . . . . . . . . . . 13 ((𝑥 / 𝑑) ∈ (1[,)+∞) → (∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐶 / 𝑦) → (abs‘((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇)) ≤ (𝐶 / (𝑥 / 𝑑))))
242232, 234, 241sylc 63 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇)) ≤ (𝐶 / (𝑥 / 𝑑)))
243181recnd 9947 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝐶 ∈ ℂ)
244243adantr 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝐶 ∈ ℂ)
245 rpcnne0 11726 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
246245ad2antrl 760 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
247246adantr 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
248 divdiv2 10616 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑑 ∈ ℂ ∧ 𝑑 ≠ 0)) → (𝐶 / (𝑥 / 𝑑)) = ((𝐶 · 𝑑) / 𝑥))
249244, 247, 69, 102, 248syl112anc 1322 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 / (𝑥 / 𝑑)) = ((𝐶 · 𝑑) / 𝑥))
250 div23 10583 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℂ ∧ 𝑑 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → ((𝐶 · 𝑑) / 𝑥) = ((𝐶 / 𝑥) · 𝑑))
251244, 69, 247, 250syl3anc 1318 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((𝐶 · 𝑑) / 𝑥) = ((𝐶 / 𝑥) · 𝑑))
252249, 251eqtrd 2644 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 / (𝑥 / 𝑑)) = ((𝐶 / 𝑥) · 𝑑))
253242, 252breqtrd 4609 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇)) ≤ ((𝐶 / 𝑥) · 𝑑))
254189, 190, 191, 193, 194, 195, 228, 253lemul12ad 10845 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((abs‘((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑))) · (abs‘((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇))) ≤ ((1 / 𝑑) · ((𝐶 / 𝑥) · 𝑑)))
25541, 175absmuld 14041 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇))) = ((abs‘((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑))) · (abs‘((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇))))
256187recnd 9947 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝐶 / 𝑥) ∈ ℂ)
257256adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 / 𝑥) ∈ ℂ)
258257, 69, 102divcan4d 10686 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((𝐶 / 𝑥) · 𝑑) / 𝑑) = (𝐶 / 𝑥))
259257, 69mulcld 9939 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((𝐶 / 𝑥) · 𝑑) ∈ ℂ)
260259, 69, 102divrec2d 10684 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((𝐶 / 𝑥) · 𝑑) / 𝑑) = ((1 / 𝑑) · ((𝐶 / 𝑥) · 𝑑)))
261258, 260eqtr3d 2646 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 / 𝑥) = ((1 / 𝑑) · ((𝐶 / 𝑥) · 𝑑)))
262254, 255, 2613brtr4d 4615 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇))) ≤ (𝐶 / 𝑥))
26340, 179, 188, 262fsumle 14372 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑑 ∈ (1...(⌊‘𝑥))(abs‘(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇))) ≤ Σ𝑑 ∈ (1...(⌊‘𝑥))(𝐶 / 𝑥))
264158nnnn0d 11228 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (⌊‘𝑥) ∈ ℕ0)
265 hashfz1 12996 . . . . . . . . . . 11 ((⌊‘𝑥) ∈ ℕ0 → (#‘(1...(⌊‘𝑥))) = (⌊‘𝑥))
266264, 265syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (#‘(1...(⌊‘𝑥))) = (⌊‘𝑥))
267266oveq1d 6564 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((#‘(1...(⌊‘𝑥))) · (𝐶 / 𝑥)) = ((⌊‘𝑥) · (𝐶 / 𝑥)))
268 fsumconst 14364 . . . . . . . . . 10 (((1...(⌊‘𝑥)) ∈ Fin ∧ (𝐶 / 𝑥) ∈ ℂ) → Σ𝑑 ∈ (1...(⌊‘𝑥))(𝐶 / 𝑥) = ((#‘(1...(⌊‘𝑥))) · (𝐶 / 𝑥)))
26940, 256, 268syl2anc 691 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑑 ∈ (1...(⌊‘𝑥))(𝐶 / 𝑥) = ((#‘(1...(⌊‘𝑥))) · (𝐶 / 𝑥)))
270158nncnd 10913 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (⌊‘𝑥) ∈ ℂ)
271 divass 10582 . . . . . . . . . 10 (((⌊‘𝑥) ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (((⌊‘𝑥) · 𝐶) / 𝑥) = ((⌊‘𝑥) · (𝐶 / 𝑥)))
272270, 243, 246, 271syl3anc 1318 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((⌊‘𝑥) · 𝐶) / 𝑥) = ((⌊‘𝑥) · (𝐶 / 𝑥)))
273267, 269, 2723eqtr4d 2654 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑑 ∈ (1...(⌊‘𝑥))(𝐶 / 𝑥) = (((⌊‘𝑥) · 𝐶) / 𝑥))
274263, 273breqtrd 4609 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑑 ∈ (1...(⌊‘𝑥))(abs‘(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇))) ≤ (((⌊‘𝑥) · 𝐶) / 𝑥))
27538adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
276 flle 12462 . . . . . . . . . 10 (𝑥 ∈ ℝ → (⌊‘𝑥) ≤ 𝑥)
27765, 276syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (⌊‘𝑥) ≤ 𝑥)
278 lemul1a 10756 . . . . . . . . 9 ((((⌊‘𝑥) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ (⌊‘𝑥) ≤ 𝑥) → ((⌊‘𝑥) · 𝐶) ≤ (𝑥 · 𝐶))
279184, 65, 275, 277, 278syl31anc 1321 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((⌊‘𝑥) · 𝐶) ≤ (𝑥 · 𝐶))
280185, 181, 64ledivmuld 11801 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((((⌊‘𝑥) · 𝐶) / 𝑥) ≤ 𝐶 ↔ ((⌊‘𝑥) · 𝐶) ≤ (𝑥 · 𝐶)))
281279, 280mpbird 246 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((⌊‘𝑥) · 𝐶) / 𝑥) ≤ 𝐶)
282180, 186, 181, 274, 281letrd 10073 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑑 ∈ (1...(⌊‘𝑥))(abs‘(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇))) ≤ 𝐶)
283178, 180, 181, 182, 282letrd 10073 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))(((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · ((seq1( + , 𝐹)‘(⌊‘(𝑥 / 𝑑))) − 𝑇))) ≤ 𝐶)
284174, 283eqbrtrd 4605 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(1 − (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇))) ≤ 𝐶)
28532, 34, 35, 39, 284elo1d 14115 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ (1 − (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇))) ∈ 𝑂(1))
2866, 31, 285o1dif 14208 . 2 (𝜑 → ((𝑥 ∈ ℝ+ ↦ 1) ∈ 𝑂(1) ↔ (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇)) ∈ 𝑂(1)))
2875, 286mpbid 221 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿𝑑)) · ((μ‘𝑑) / 𝑑)) · 𝑇)) ∈ 𝑂(1))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  {crab 2900   ⊆ wss 3540   class class class wbr 4583   ↦ cmpt 4643  ⟶wf 5800  –onto→wfo 5802  ‘cfv 5804  (class class class)co 6549  Fincfn 7841  ℂcc 9813  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  +∞cpnf 9950   ≤ cle 9954   − cmin 10145   / cdiv 10563  ℕcn 10897  ℕ0cn0 11169  ℤcz 11254  ℤ≥cuz 11563  ℝ+crp 11708  [,)cico 12048  ...cfz 12197  ⌊cfl 12453  seqcseq 12663  #chash 12979  abscabs 13822   ⇝ cli 14063  𝑂(1)co1 14065  Σcsu 14264   ∥ cdvds 14821  Basecbs 15695  0gc0g 15923  ℤRHomczrh 19667  ℤ/nℤczn 19670  μcmu 24621  DChrcdchr 24757 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-er 7629  df-ec 7631  df-qs 7635  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-xnn0 11241  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-o1 14069  df-lo1 14070  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-dvds 14822  df-gcd 15055  df-prm 15224  df-pc 15380  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-qus 15992  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-nsg 17415  df-eqg 17416  df-ghm 17481  df-cntz 17573  df-od 17771  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-dvr 18506  df-rnghom 18538  df-drng 18572  df-subrg 18601  df-lmod 18688  df-lss 18754  df-lsp 18793  df-sra 18993  df-rgmod 18994  df-lidl 18995  df-rsp 18996  df-2idl 19053  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-zring 19638  df-zrh 19671  df-zn 19674  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107  df-cxp 24108  df-mu 24627  df-dchr 24758 This theorem is referenced by:  dchrvmasumiflem2  24991  dchrmusumlem  25011
 Copyright terms: Public domain W3C validator