Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalemrotps Structured version   Visualization version   GIF version

Theorem dalemrotps 33995
 Description: Lemma for dath 34040. Rotate triangles 𝑌 = 𝑃𝑄𝑅 and 𝑍 = 𝑆𝑇𝑈 to allow reuse of analogous proofs. (Contributed by NM, 15-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalem.l = (le‘𝐾)
dalem.j = (join‘𝐾)
dalem.a 𝐴 = (Atoms‘𝐾)
dalem.ps (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
dalemrotps.y 𝑌 = ((𝑃 𝑄) 𝑅)
Assertion
Ref Expression
dalemrotps ((𝜑𝜓) → ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 ((𝑄 𝑅) 𝑃) ∧ (𝑑𝑐 ∧ ¬ 𝑑 ((𝑄 𝑅) 𝑃) ∧ 𝐶 (𝑐 𝑑))))

Proof of Theorem dalemrotps
StepHypRef Expression
1 dalem.ps . . . . 5 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
21dalemccea 33987 . . . 4 (𝜓𝑐𝐴)
31dalemddea 33988 . . . 4 (𝜓𝑑𝐴)
42, 3jca 553 . . 3 (𝜓 → (𝑐𝐴𝑑𝐴))
54adantl 481 . 2 ((𝜑𝜓) → (𝑐𝐴𝑑𝐴))
61dalem-ccly 33989 . . . 4 (𝜓 → ¬ 𝑐 𝑌)
76adantl 481 . . 3 ((𝜑𝜓) → ¬ 𝑐 𝑌)
8 dalem.ph . . . . . . 7 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
9 dalem.j . . . . . . 7 = (join‘𝐾)
10 dalem.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
118, 9, 10dalemqrprot 33952 . . . . . 6 (𝜑 → ((𝑄 𝑅) 𝑃) = ((𝑃 𝑄) 𝑅))
12 dalemrotps.y . . . . . 6 𝑌 = ((𝑃 𝑄) 𝑅)
1311, 12syl6reqr 2663 . . . . 5 (𝜑𝑌 = ((𝑄 𝑅) 𝑃))
1413breq2d 4595 . . . 4 (𝜑 → (𝑐 𝑌𝑐 ((𝑄 𝑅) 𝑃)))
1514adantr 480 . . 3 ((𝜑𝜓) → (𝑐 𝑌𝑐 ((𝑄 𝑅) 𝑃)))
167, 15mtbid 313 . 2 ((𝜑𝜓) → ¬ 𝑐 ((𝑄 𝑅) 𝑃))
171dalemccnedd 33991 . . . . 5 (𝜓𝑐𝑑)
1817necomd 2837 . . . 4 (𝜓𝑑𝑐)
1918adantl 481 . . 3 ((𝜑𝜓) → 𝑑𝑐)
201dalem-ddly 33990 . . . . 5 (𝜓 → ¬ 𝑑 𝑌)
2120adantl 481 . . . 4 ((𝜑𝜓) → ¬ 𝑑 𝑌)
2213breq2d 4595 . . . . 5 (𝜑 → (𝑑 𝑌𝑑 ((𝑄 𝑅) 𝑃)))
2322adantr 480 . . . 4 ((𝜑𝜓) → (𝑑 𝑌𝑑 ((𝑄 𝑅) 𝑃)))
2421, 23mtbid 313 . . 3 ((𝜑𝜓) → ¬ 𝑑 ((𝑄 𝑅) 𝑃))
251dalemclccjdd 33992 . . . 4 (𝜓𝐶 (𝑐 𝑑))
2625adantl 481 . . 3 ((𝜑𝜓) → 𝐶 (𝑐 𝑑))
2719, 24, 263jca 1235 . 2 ((𝜑𝜓) → (𝑑𝑐 ∧ ¬ 𝑑 ((𝑄 𝑅) 𝑃) ∧ 𝐶 (𝑐 𝑑)))
285, 16, 273jca 1235 1 ((𝜑𝜓) → ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 ((𝑄 𝑅) 𝑃) ∧ (𝑑𝑐 ∧ ¬ 𝑑 ((𝑄 𝑅) 𝑃) ∧ 𝐶 (𝑐 𝑑))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549  Basecbs 15695  lecple 15775  joincjn 16767  Atomscatm 33568  HLchlt 33655 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-preset 16751  df-poset 16769  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-lat 16869  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656 This theorem is referenced by:  dalem29  34005  dalem30  34006  dalem31N  34007  dalem32  34008  dalem33  34009  dalem34  34010  dalem35  34011  dalem36  34012  dalem37  34013  dalem40  34016  dalem46  34022  dalem47  34023  dalem49  34025  dalem50  34026  dalem58  34034  dalem59  34035
 Copyright terms: Public domain W3C validator