Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem56 Structured version   Visualization version   GIF version

Theorem dalem56 34032
 Description: Lemma for dath 34040. Analogue of dalem55 34031 for line 𝑆𝑇. (Contributed by NM, 8-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalem.l = (le‘𝐾)
dalem.j = (join‘𝐾)
dalem.a 𝐴 = (Atoms‘𝐾)
dalem.ps (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
dalem54.m = (meet‘𝐾)
dalem54.o 𝑂 = (LPlanes‘𝐾)
dalem54.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem54.z 𝑍 = ((𝑆 𝑇) 𝑈)
dalem54.g 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
dalem54.h 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
dalem54.i 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
dalem54.b1 𝐵 = (((𝐺 𝐻) 𝐼) 𝑌)
Assertion
Ref Expression
dalem56 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) (𝑆 𝑇)) = ((𝐺 𝐻) 𝐵))

Proof of Theorem dalem56
StepHypRef Expression
1 dalem.ph . . . . 5 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
2 dalem.l . . . . 5 = (le‘𝐾)
3 dalem.j . . . . 5 = (join‘𝐾)
4 dalem.a . . . . 5 𝐴 = (Atoms‘𝐾)
51, 2, 3, 4dalemswapyz 33960 . . . 4 (𝜑 → (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑍𝑂𝑌𝑂) ∧ ((¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (𝐶 (𝑆 𝑃) ∧ 𝐶 (𝑇 𝑄) ∧ 𝐶 (𝑈 𝑅)))))
653ad2ant1 1075 . . 3 ((𝜑𝑌 = 𝑍𝜓) → (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑍𝑂𝑌𝑂) ∧ ((¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (𝐶 (𝑆 𝑃) ∧ 𝐶 (𝑇 𝑄) ∧ 𝐶 (𝑈 𝑅)))))
7 simp2 1055 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝑌 = 𝑍)
87eqcomd 2616 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝑍 = 𝑌)
9 dalem.ps . . . 4 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
101, 2, 3, 4, 9dalemswapyzps 33994 . . 3 ((𝜑𝑌 = 𝑍𝜓) → ((𝑑𝐴𝑐𝐴) ∧ ¬ 𝑑 𝑍 ∧ (𝑐𝑑 ∧ ¬ 𝑐 𝑍𝐶 (𝑑 𝑐))))
11 biid 250 . . . 4 ((((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑍𝑂𝑌𝑂) ∧ ((¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (𝐶 (𝑆 𝑃) ∧ 𝐶 (𝑇 𝑄) ∧ 𝐶 (𝑈 𝑅)))) ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑍𝑂𝑌𝑂) ∧ ((¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (𝐶 (𝑆 𝑃) ∧ 𝐶 (𝑇 𝑄) ∧ 𝐶 (𝑈 𝑅)))))
12 biid 250 . . . 4 (((𝑑𝐴𝑐𝐴) ∧ ¬ 𝑑 𝑍 ∧ (𝑐𝑑 ∧ ¬ 𝑐 𝑍𝐶 (𝑑 𝑐))) ↔ ((𝑑𝐴𝑐𝐴) ∧ ¬ 𝑑 𝑍 ∧ (𝑐𝑑 ∧ ¬ 𝑐 𝑍𝐶 (𝑑 𝑐))))
13 dalem54.m . . . 4 = (meet‘𝐾)
14 dalem54.o . . . 4 𝑂 = (LPlanes‘𝐾)
15 dalem54.z . . . 4 𝑍 = ((𝑆 𝑇) 𝑈)
16 dalem54.y . . . 4 𝑌 = ((𝑃 𝑄) 𝑅)
17 eqid 2610 . . . 4 ((𝑑 𝑆) (𝑐 𝑃)) = ((𝑑 𝑆) (𝑐 𝑃))
18 eqid 2610 . . . 4 ((𝑑 𝑇) (𝑐 𝑄)) = ((𝑑 𝑇) (𝑐 𝑄))
19 eqid 2610 . . . 4 ((𝑑 𝑈) (𝑐 𝑅)) = ((𝑑 𝑈) (𝑐 𝑅))
20 eqid 2610 . . . 4 (((((𝑑 𝑆) (𝑐 𝑃)) ((𝑑 𝑇) (𝑐 𝑄))) ((𝑑 𝑈) (𝑐 𝑅))) 𝑍) = (((((𝑑 𝑆) (𝑐 𝑃)) ((𝑑 𝑇) (𝑐 𝑄))) ((𝑑 𝑈) (𝑐 𝑅))) 𝑍)
2111, 2, 3, 4, 12, 13, 14, 15, 16, 17, 18, 19, 20dalem55 34031 . . 3 (((((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑍𝑂𝑌𝑂) ∧ ((¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (𝐶 (𝑆 𝑃) ∧ 𝐶 (𝑇 𝑄) ∧ 𝐶 (𝑈 𝑅)))) ∧ 𝑍 = 𝑌 ∧ ((𝑑𝐴𝑐𝐴) ∧ ¬ 𝑑 𝑍 ∧ (𝑐𝑑 ∧ ¬ 𝑐 𝑍𝐶 (𝑑 𝑐)))) → ((((𝑑 𝑆) (𝑐 𝑃)) ((𝑑 𝑇) (𝑐 𝑄))) (𝑆 𝑇)) = ((((𝑑 𝑆) (𝑐 𝑃)) ((𝑑 𝑇) (𝑐 𝑄))) (((((𝑑 𝑆) (𝑐 𝑃)) ((𝑑 𝑇) (𝑐 𝑄))) ((𝑑 𝑈) (𝑐 𝑅))) 𝑍)))
226, 8, 10, 21syl3anc 1318 . 2 ((𝜑𝑌 = 𝑍𝜓) → ((((𝑑 𝑆) (𝑐 𝑃)) ((𝑑 𝑇) (𝑐 𝑄))) (𝑆 𝑇)) = ((((𝑑 𝑆) (𝑐 𝑃)) ((𝑑 𝑇) (𝑐 𝑄))) (((((𝑑 𝑆) (𝑐 𝑃)) ((𝑑 𝑇) (𝑐 𝑄))) ((𝑑 𝑈) (𝑐 𝑅))) 𝑍)))
23 dalem54.g . . . . 5 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
241dalemkelat 33928 . . . . . . 7 (𝜑𝐾 ∈ Lat)
25243ad2ant1 1075 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ Lat)
261dalemkehl 33927 . . . . . . . 8 (𝜑𝐾 ∈ HL)
27263ad2ant1 1075 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ HL)
289dalemccea 33987 . . . . . . . 8 (𝜓𝑐𝐴)
29283ad2ant3 1077 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → 𝑐𝐴)
301dalempea 33930 . . . . . . . 8 (𝜑𝑃𝐴)
31303ad2ant1 1075 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → 𝑃𝐴)
32 eqid 2610 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
3332, 3, 4hlatjcl 33671 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑐𝐴𝑃𝐴) → (𝑐 𝑃) ∈ (Base‘𝐾))
3427, 29, 31, 33syl3anc 1318 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝑃) ∈ (Base‘𝐾))
359dalemddea 33988 . . . . . . . 8 (𝜓𝑑𝐴)
36353ad2ant3 1077 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → 𝑑𝐴)
371dalemsea 33933 . . . . . . . 8 (𝜑𝑆𝐴)
38373ad2ant1 1075 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → 𝑆𝐴)
3932, 3, 4hlatjcl 33671 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑑𝐴𝑆𝐴) → (𝑑 𝑆) ∈ (Base‘𝐾))
4027, 36, 38, 39syl3anc 1318 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → (𝑑 𝑆) ∈ (Base‘𝐾))
4132, 13latmcom 16898 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑐 𝑃) ∈ (Base‘𝐾) ∧ (𝑑 𝑆) ∈ (Base‘𝐾)) → ((𝑐 𝑃) (𝑑 𝑆)) = ((𝑑 𝑆) (𝑐 𝑃)))
4225, 34, 40, 41syl3anc 1318 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → ((𝑐 𝑃) (𝑑 𝑆)) = ((𝑑 𝑆) (𝑐 𝑃)))
4323, 42syl5eq 2656 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝐺 = ((𝑑 𝑆) (𝑐 𝑃)))
44 dalem54.h . . . . 5 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
451dalemqea 33931 . . . . . . . 8 (𝜑𝑄𝐴)
46453ad2ant1 1075 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → 𝑄𝐴)
4732, 3, 4hlatjcl 33671 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑐𝐴𝑄𝐴) → (𝑐 𝑄) ∈ (Base‘𝐾))
4827, 29, 46, 47syl3anc 1318 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝑄) ∈ (Base‘𝐾))
491dalemtea 33934 . . . . . . . 8 (𝜑𝑇𝐴)
50493ad2ant1 1075 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → 𝑇𝐴)
5132, 3, 4hlatjcl 33671 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑑𝐴𝑇𝐴) → (𝑑 𝑇) ∈ (Base‘𝐾))
5227, 36, 50, 51syl3anc 1318 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → (𝑑 𝑇) ∈ (Base‘𝐾))
5332, 13latmcom 16898 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑐 𝑄) ∈ (Base‘𝐾) ∧ (𝑑 𝑇) ∈ (Base‘𝐾)) → ((𝑐 𝑄) (𝑑 𝑇)) = ((𝑑 𝑇) (𝑐 𝑄)))
5425, 48, 52, 53syl3anc 1318 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → ((𝑐 𝑄) (𝑑 𝑇)) = ((𝑑 𝑇) (𝑐 𝑄)))
5544, 54syl5eq 2656 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝐻 = ((𝑑 𝑇) (𝑐 𝑄)))
5643, 55oveq12d 6567 . . 3 ((𝜑𝑌 = 𝑍𝜓) → (𝐺 𝐻) = (((𝑑 𝑆) (𝑐 𝑃)) ((𝑑 𝑇) (𝑐 𝑄))))
5756oveq1d 6564 . 2 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) (𝑆 𝑇)) = ((((𝑑 𝑆) (𝑐 𝑃)) ((𝑑 𝑇) (𝑐 𝑄))) (𝑆 𝑇)))
58 dalem54.b1 . . . 4 𝐵 = (((𝐺 𝐻) 𝐼) 𝑌)
59 dalem54.i . . . . . . 7 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
601dalemrea 33932 . . . . . . . . . 10 (𝜑𝑅𝐴)
61603ad2ant1 1075 . . . . . . . . 9 ((𝜑𝑌 = 𝑍𝜓) → 𝑅𝐴)
6232, 3, 4hlatjcl 33671 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑐𝐴𝑅𝐴) → (𝑐 𝑅) ∈ (Base‘𝐾))
6327, 29, 61, 62syl3anc 1318 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝑅) ∈ (Base‘𝐾))
641dalemuea 33935 . . . . . . . . . 10 (𝜑𝑈𝐴)
65643ad2ant1 1075 . . . . . . . . 9 ((𝜑𝑌 = 𝑍𝜓) → 𝑈𝐴)
6632, 3, 4hlatjcl 33671 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑑𝐴𝑈𝐴) → (𝑑 𝑈) ∈ (Base‘𝐾))
6727, 36, 65, 66syl3anc 1318 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → (𝑑 𝑈) ∈ (Base‘𝐾))
6832, 13latmcom 16898 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑐 𝑅) ∈ (Base‘𝐾) ∧ (𝑑 𝑈) ∈ (Base‘𝐾)) → ((𝑐 𝑅) (𝑑 𝑈)) = ((𝑑 𝑈) (𝑐 𝑅)))
6925, 63, 67, 68syl3anc 1318 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → ((𝑐 𝑅) (𝑑 𝑈)) = ((𝑑 𝑈) (𝑐 𝑅)))
7059, 69syl5eq 2656 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝐼 = ((𝑑 𝑈) (𝑐 𝑅)))
7156, 70oveq12d 6567 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐼) = ((((𝑑 𝑆) (𝑐 𝑃)) ((𝑑 𝑇) (𝑐 𝑄))) ((𝑑 𝑈) (𝑐 𝑅))))
7271, 7oveq12d 6567 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → (((𝐺 𝐻) 𝐼) 𝑌) = (((((𝑑 𝑆) (𝑐 𝑃)) ((𝑑 𝑇) (𝑐 𝑄))) ((𝑑 𝑈) (𝑐 𝑅))) 𝑍))
7358, 72syl5eq 2656 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐵 = (((((𝑑 𝑆) (𝑐 𝑃)) ((𝑑 𝑇) (𝑐 𝑄))) ((𝑑 𝑈) (𝑐 𝑅))) 𝑍))
7456, 73oveq12d 6567 . 2 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐵) = ((((𝑑 𝑆) (𝑐 𝑃)) ((𝑑 𝑇) (𝑐 𝑄))) (((((𝑑 𝑆) (𝑐 𝑃)) ((𝑑 𝑇) (𝑐 𝑄))) ((𝑑 𝑈) (𝑐 𝑅))) 𝑍)))
7522, 57, 743eqtr4d 2654 1 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) (𝑆 𝑇)) = ((𝐺 𝐻) 𝐵))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549  Basecbs 15695  lecple 15775  joincjn 16767  meetcmee 16768  Latclat 16868  Atomscatm 33568  HLchlt 33655  LPlanesclpl 33796 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-lat 16869  df-clat 16931  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-llines 33802  df-lplanes 33803  df-lvols 33804 This theorem is referenced by:  dalem57  34033
 Copyright terms: Public domain W3C validator