Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem51 Structured version   Visualization version   GIF version

Theorem dalem51 34027
Description: Lemma for dath 34040. Construct the condition 𝜑 with 𝑐, 𝐺𝐻𝐼, and 𝑌 in place of 𝐶, 𝑌, and 𝑍 respectively. This lets us reuse the special case of Desargues' Theorem where 𝑌𝑍, to eventually prove the case where 𝑌 = 𝑍. (Contributed by NM, 16-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalem.l = (le‘𝐾)
dalem.j = (join‘𝐾)
dalem.a 𝐴 = (Atoms‘𝐾)
dalem.ps (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
dalem44.m = (meet‘𝐾)
dalem44.o 𝑂 = (LPlanes‘𝐾)
dalem44.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem44.z 𝑍 = ((𝑆 𝑇) 𝑈)
dalem44.g 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
dalem44.h 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
dalem44.i 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
Assertion
Ref Expression
dalem51 ((𝜑𝑌 = 𝑍𝜓) → ((((𝐾 ∈ HL ∧ 𝑐𝐴) ∧ (𝐺𝐴𝐻𝐴𝐼𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (((𝐺 𝐻) 𝐼) ∈ 𝑂𝑌𝑂) ∧ ((¬ 𝑐 (𝐺 𝐻) ∧ ¬ 𝑐 (𝐻 𝐼) ∧ ¬ 𝑐 (𝐼 𝐺)) ∧ (¬ 𝑐 (𝑃 𝑄) ∧ ¬ 𝑐 (𝑄 𝑅) ∧ ¬ 𝑐 (𝑅 𝑃)) ∧ (𝑐 (𝐺 𝑃) ∧ 𝑐 (𝐻 𝑄) ∧ 𝑐 (𝐼 𝑅)))) ∧ ((𝐺 𝐻) 𝐼) ≠ 𝑌))

Proof of Theorem dalem51
StepHypRef Expression
1 dalem.ph . . . . . . 7 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
21dalemkehl 33927 . . . . . 6 (𝜑𝐾 ∈ HL)
323ad2ant1 1075 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ HL)
4 dalem.ps . . . . . . 7 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
54dalemccea 33987 . . . . . 6 (𝜓𝑐𝐴)
653ad2ant3 1077 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝑐𝐴)
73, 6jca 553 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → (𝐾 ∈ HL ∧ 𝑐𝐴))
8 dalem.l . . . . . 6 = (le‘𝐾)
9 dalem.j . . . . . 6 = (join‘𝐾)
10 dalem.a . . . . . 6 𝐴 = (Atoms‘𝐾)
11 dalem44.m . . . . . 6 = (meet‘𝐾)
12 dalem44.o . . . . . 6 𝑂 = (LPlanes‘𝐾)
13 dalem44.y . . . . . 6 𝑌 = ((𝑃 𝑄) 𝑅)
14 dalem44.z . . . . . 6 𝑍 = ((𝑆 𝑇) 𝑈)
15 dalem44.g . . . . . 6 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
161, 8, 9, 10, 4, 11, 12, 13, 14, 15dalem23 34000 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝐺𝐴)
17 dalem44.h . . . . . 6 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
181, 8, 9, 10, 4, 11, 12, 13, 14, 17dalem29 34005 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝐻𝐴)
19 dalem44.i . . . . . 6 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
201, 8, 9, 10, 4, 11, 12, 13, 14, 19dalem34 34010 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝐼𝐴)
2116, 18, 203jca 1235 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → (𝐺𝐴𝐻𝐴𝐼𝐴))
221dalempea 33930 . . . . . 6 (𝜑𝑃𝐴)
231dalemqea 33931 . . . . . 6 (𝜑𝑄𝐴)
241dalemrea 33932 . . . . . 6 (𝜑𝑅𝐴)
2522, 23, 243jca 1235 . . . . 5 (𝜑 → (𝑃𝐴𝑄𝐴𝑅𝐴))
26253ad2ant1 1075 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → (𝑃𝐴𝑄𝐴𝑅𝐴))
277, 21, 263jca 1235 . . 3 ((𝜑𝑌 = 𝑍𝜓) → ((𝐾 ∈ HL ∧ 𝑐𝐴) ∧ (𝐺𝐴𝐻𝐴𝐼𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)))
281, 8, 9, 10, 4, 11, 12, 13, 14, 15, 17, 19dalem42 34018 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐼) ∈ 𝑂)
291dalemyeo 33936 . . . . 5 (𝜑𝑌𝑂)
30293ad2ant1 1075 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝑌𝑂)
3128, 30jca 553 . . 3 ((𝜑𝑌 = 𝑍𝜓) → (((𝐺 𝐻) 𝐼) ∈ 𝑂𝑌𝑂))
321, 8, 9, 10, 4, 11, 12, 13, 14, 15, 17, 19dalem45 34021 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝑐 (𝐺 𝐻))
331, 8, 9, 10, 4, 11, 12, 13, 14, 15, 17, 19dalem46 34022 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝑐 (𝐻 𝐼))
341, 8, 9, 10, 4, 11, 12, 13, 14, 15, 17, 19dalem47 34023 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝑐 (𝐼 𝐺))
3532, 33, 343jca 1235 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → (¬ 𝑐 (𝐺 𝐻) ∧ ¬ 𝑐 (𝐻 𝐼) ∧ ¬ 𝑐 (𝐼 𝐺)))
361, 8, 9, 10, 4, 11, 12, 13, 14, 15, 17, 19dalem48 34024 . . . . . 6 ((𝜑𝜓) → ¬ 𝑐 (𝑃 𝑄))
371, 8, 9, 10, 4, 11, 12, 13, 14, 15, 17, 19dalem49 34025 . . . . . 6 ((𝜑𝜓) → ¬ 𝑐 (𝑄 𝑅))
381, 8, 9, 10, 4, 11, 12, 13, 14, 15, 17, 19dalem50 34026 . . . . . 6 ((𝜑𝜓) → ¬ 𝑐 (𝑅 𝑃))
3936, 37, 383jca 1235 . . . . 5 ((𝜑𝜓) → (¬ 𝑐 (𝑃 𝑄) ∧ ¬ 𝑐 (𝑄 𝑅) ∧ ¬ 𝑐 (𝑅 𝑃)))
40393adant2 1073 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → (¬ 𝑐 (𝑃 𝑄) ∧ ¬ 𝑐 (𝑄 𝑅) ∧ ¬ 𝑐 (𝑅 𝑃)))
411, 8, 9, 10, 4, 11, 12, 13, 14, 15dalem27 34003 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝑐 (𝐺 𝑃))
421, 8, 9, 10, 4, 11, 12, 13, 14, 17dalem32 34008 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝑐 (𝐻 𝑄))
431, 8, 9, 10, 4, 11, 12, 13, 14, 19dalem36 34012 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝑐 (𝐼 𝑅))
4441, 42, 433jca 1235 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 (𝐺 𝑃) ∧ 𝑐 (𝐻 𝑄) ∧ 𝑐 (𝐼 𝑅)))
4535, 40, 443jca 1235 . . 3 ((𝜑𝑌 = 𝑍𝜓) → ((¬ 𝑐 (𝐺 𝐻) ∧ ¬ 𝑐 (𝐻 𝐼) ∧ ¬ 𝑐 (𝐼 𝐺)) ∧ (¬ 𝑐 (𝑃 𝑄) ∧ ¬ 𝑐 (𝑄 𝑅) ∧ ¬ 𝑐 (𝑅 𝑃)) ∧ (𝑐 (𝐺 𝑃) ∧ 𝑐 (𝐻 𝑄) ∧ 𝑐 (𝐼 𝑅))))
4627, 31, 453jca 1235 . 2 ((𝜑𝑌 = 𝑍𝜓) → (((𝐾 ∈ HL ∧ 𝑐𝐴) ∧ (𝐺𝐴𝐻𝐴𝐼𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (((𝐺 𝐻) 𝐼) ∈ 𝑂𝑌𝑂) ∧ ((¬ 𝑐 (𝐺 𝐻) ∧ ¬ 𝑐 (𝐻 𝐼) ∧ ¬ 𝑐 (𝐼 𝐺)) ∧ (¬ 𝑐 (𝑃 𝑄) ∧ ¬ 𝑐 (𝑄 𝑅) ∧ ¬ 𝑐 (𝑅 𝑃)) ∧ (𝑐 (𝐺 𝑃) ∧ 𝑐 (𝐻 𝑄) ∧ 𝑐 (𝐼 𝑅)))))
471, 8, 9, 10, 4, 11, 12, 13, 14, 15, 17, 19dalem43 34019 . 2 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐼) ≠ 𝑌)
4846, 47jca 553 1 ((𝜑𝑌 = 𝑍𝜓) → ((((𝐾 ∈ HL ∧ 𝑐𝐴) ∧ (𝐺𝐴𝐻𝐴𝐼𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (((𝐺 𝐻) 𝐼) ∈ 𝑂𝑌𝑂) ∧ ((¬ 𝑐 (𝐺 𝐻) ∧ ¬ 𝑐 (𝐻 𝐼) ∧ ¬ 𝑐 (𝐼 𝐺)) ∧ (¬ 𝑐 (𝑃 𝑄) ∧ ¬ 𝑐 (𝑄 𝑅) ∧ ¬ 𝑐 (𝑅 𝑃)) ∧ (𝑐 (𝐺 𝑃) ∧ 𝑐 (𝐻 𝑄) ∧ 𝑐 (𝐼 𝑅)))) ∧ ((𝐺 𝐻) 𝐼) ≠ 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  cfv 5804  (class class class)co 6549  Basecbs 15695  lecple 15775  joincjn 16767  meetcmee 16768  Atomscatm 33568  HLchlt 33655  LPlanesclpl 33796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-lat 16869  df-clat 16931  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-llines 33802  df-lplanes 33803  df-lvols 33804
This theorem is referenced by:  dalem53  34029  dalem54  34030
  Copyright terms: Public domain W3C validator