Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem44 Structured version   Visualization version   GIF version

Theorem dalem44 34020
Description: Lemma for dath 34040. Dummy center of perspectivity 𝑐 lies outside of plane 𝐺𝐻𝐼. (Contributed by NM, 16-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalem.l = (le‘𝐾)
dalem.j = (join‘𝐾)
dalem.a 𝐴 = (Atoms‘𝐾)
dalem.ps (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
dalem44.m = (meet‘𝐾)
dalem44.o 𝑂 = (LPlanes‘𝐾)
dalem44.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem44.z 𝑍 = ((𝑆 𝑇) 𝑈)
dalem44.g 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
dalem44.h 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
dalem44.i 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
Assertion
Ref Expression
dalem44 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝑐 ((𝐺 𝐻) 𝐼))

Proof of Theorem dalem44
StepHypRef Expression
1 dalem.ph . . . 4 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
2 dalem.l . . . 4 = (le‘𝐾)
3 dalem.j . . . 4 = (join‘𝐾)
4 dalem.a . . . 4 𝐴 = (Atoms‘𝐾)
5 dalem.ps . . . 4 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
6 dalem44.m . . . 4 = (meet‘𝐾)
7 dalem44.o . . . 4 𝑂 = (LPlanes‘𝐾)
8 dalem44.y . . . 4 𝑌 = ((𝑃 𝑄) 𝑅)
9 dalem44.z . . . 4 𝑍 = ((𝑆 𝑇) 𝑈)
10 dalem44.g . . . 4 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
11 dalem44.h . . . 4 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
12 dalem44.i . . . 4 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12dalem43 34019 . . 3 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐼) ≠ 𝑌)
1413necomd 2837 . 2 ((𝜑𝑌 = 𝑍𝜓) → 𝑌 ≠ ((𝐺 𝐻) 𝐼))
151dalemkelat 33928 . . . . . . 7 (𝜑𝐾 ∈ Lat)
16153ad2ant1 1075 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ Lat)
175, 4dalemcceb 33993 . . . . . . 7 (𝜓𝑐 ∈ (Base‘𝐾))
18173ad2ant3 1077 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝑐 ∈ (Base‘𝐾))
191, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12dalem42 34018 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐼) ∈ 𝑂)
20 eqid 2610 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
2120, 7lplnbase 33838 . . . . . . 7 (((𝐺 𝐻) 𝐼) ∈ 𝑂 → ((𝐺 𝐻) 𝐼) ∈ (Base‘𝐾))
2219, 21syl 17 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐼) ∈ (Base‘𝐾))
2320, 2, 3latleeqj1 16886 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑐 ∈ (Base‘𝐾) ∧ ((𝐺 𝐻) 𝐼) ∈ (Base‘𝐾)) → (𝑐 ((𝐺 𝐻) 𝐼) ↔ (𝑐 ((𝐺 𝐻) 𝐼)) = ((𝐺 𝐻) 𝐼)))
2416, 18, 22, 23syl3anc 1318 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 ((𝐺 𝐻) 𝐼) ↔ (𝑐 ((𝐺 𝐻) 𝐼)) = ((𝐺 𝐻) 𝐼)))
251, 2, 3, 4, 5, 6, 7, 8, 9, 10dalem28 34004 . . . . . . . . . . . 12 ((𝜑𝑌 = 𝑍𝜓) → 𝑃 (𝐺 𝑐))
261dalemkehl 33927 . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ HL)
27263ad2ant1 1075 . . . . . . . . . . . . 13 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ HL)
285dalemccea 33987 . . . . . . . . . . . . . 14 (𝜓𝑐𝐴)
29283ad2ant3 1077 . . . . . . . . . . . . 13 ((𝜑𝑌 = 𝑍𝜓) → 𝑐𝐴)
301, 2, 3, 4, 5, 6, 7, 8, 9, 10dalem23 34000 . . . . . . . . . . . . 13 ((𝜑𝑌 = 𝑍𝜓) → 𝐺𝐴)
313, 4hlatjcom 33672 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑐𝐴𝐺𝐴) → (𝑐 𝐺) = (𝐺 𝑐))
3227, 29, 30, 31syl3anc 1318 . . . . . . . . . . . 12 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝐺) = (𝐺 𝑐))
3325, 32breqtrrd 4611 . . . . . . . . . . 11 ((𝜑𝑌 = 𝑍𝜓) → 𝑃 (𝑐 𝐺))
341, 2, 3, 4, 5, 6, 7, 8, 9, 11dalem33 34009 . . . . . . . . . . . 12 ((𝜑𝑌 = 𝑍𝜓) → 𝑄 (𝐻 𝑐))
351, 2, 3, 4, 5, 6, 7, 8, 9, 11dalem29 34005 . . . . . . . . . . . . 13 ((𝜑𝑌 = 𝑍𝜓) → 𝐻𝐴)
363, 4hlatjcom 33672 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑐𝐴𝐻𝐴) → (𝑐 𝐻) = (𝐻 𝑐))
3727, 29, 35, 36syl3anc 1318 . . . . . . . . . . . 12 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝐻) = (𝐻 𝑐))
3834, 37breqtrrd 4611 . . . . . . . . . . 11 ((𝜑𝑌 = 𝑍𝜓) → 𝑄 (𝑐 𝐻))
391, 4dalempeb 33943 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ (Base‘𝐾))
40393ad2ant1 1075 . . . . . . . . . . . 12 ((𝜑𝑌 = 𝑍𝜓) → 𝑃 ∈ (Base‘𝐾))
4120, 3, 4hlatjcl 33671 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑐𝐴𝐺𝐴) → (𝑐 𝐺) ∈ (Base‘𝐾))
4227, 29, 30, 41syl3anc 1318 . . . . . . . . . . . 12 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝐺) ∈ (Base‘𝐾))
431, 4dalemqeb 33944 . . . . . . . . . . . . 13 (𝜑𝑄 ∈ (Base‘𝐾))
44433ad2ant1 1075 . . . . . . . . . . . 12 ((𝜑𝑌 = 𝑍𝜓) → 𝑄 ∈ (Base‘𝐾))
4520, 3, 4hlatjcl 33671 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑐𝐴𝐻𝐴) → (𝑐 𝐻) ∈ (Base‘𝐾))
4627, 29, 35, 45syl3anc 1318 . . . . . . . . . . . 12 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝐻) ∈ (Base‘𝐾))
4720, 2, 3latjlej12 16890 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ (𝑐 𝐺) ∈ (Base‘𝐾)) ∧ (𝑄 ∈ (Base‘𝐾) ∧ (𝑐 𝐻) ∈ (Base‘𝐾))) → ((𝑃 (𝑐 𝐺) ∧ 𝑄 (𝑐 𝐻)) → (𝑃 𝑄) ((𝑐 𝐺) (𝑐 𝐻))))
4816, 40, 42, 44, 46, 47syl122anc 1327 . . . . . . . . . . 11 ((𝜑𝑌 = 𝑍𝜓) → ((𝑃 (𝑐 𝐺) ∧ 𝑄 (𝑐 𝐻)) → (𝑃 𝑄) ((𝑐 𝐺) (𝑐 𝐻))))
4933, 38, 48mp2and 711 . . . . . . . . . 10 ((𝜑𝑌 = 𝑍𝜓) → (𝑃 𝑄) ((𝑐 𝐺) (𝑐 𝐻)))
5020, 4atbase 33594 . . . . . . . . . . . 12 (𝐺𝐴𝐺 ∈ (Base‘𝐾))
5130, 50syl 17 . . . . . . . . . . 11 ((𝜑𝑌 = 𝑍𝜓) → 𝐺 ∈ (Base‘𝐾))
5220, 4atbase 33594 . . . . . . . . . . . 12 (𝐻𝐴𝐻 ∈ (Base‘𝐾))
5335, 52syl 17 . . . . . . . . . . 11 ((𝜑𝑌 = 𝑍𝜓) → 𝐻 ∈ (Base‘𝐾))
5420, 3latjjdi 16926 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑐 ∈ (Base‘𝐾) ∧ 𝐺 ∈ (Base‘𝐾) ∧ 𝐻 ∈ (Base‘𝐾))) → (𝑐 (𝐺 𝐻)) = ((𝑐 𝐺) (𝑐 𝐻)))
5516, 18, 51, 53, 54syl13anc 1320 . . . . . . . . . 10 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 (𝐺 𝐻)) = ((𝑐 𝐺) (𝑐 𝐻)))
5649, 55breqtrrd 4611 . . . . . . . . 9 ((𝜑𝑌 = 𝑍𝜓) → (𝑃 𝑄) (𝑐 (𝐺 𝐻)))
571, 2, 3, 4, 5, 6, 7, 8, 9, 12dalem37 34013 . . . . . . . . . 10 ((𝜑𝑌 = 𝑍𝜓) → 𝑅 (𝐼 𝑐))
581, 2, 3, 4, 5, 6, 7, 8, 9, 12dalem34 34010 . . . . . . . . . . 11 ((𝜑𝑌 = 𝑍𝜓) → 𝐼𝐴)
593, 4hlatjcom 33672 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑐𝐴𝐼𝐴) → (𝑐 𝐼) = (𝐼 𝑐))
6027, 29, 58, 59syl3anc 1318 . . . . . . . . . 10 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝐼) = (𝐼 𝑐))
6157, 60breqtrrd 4611 . . . . . . . . 9 ((𝜑𝑌 = 𝑍𝜓) → 𝑅 (𝑐 𝐼))
621, 3, 4dalempjqeb 33949 . . . . . . . . . . 11 (𝜑 → (𝑃 𝑄) ∈ (Base‘𝐾))
63623ad2ant1 1075 . . . . . . . . . 10 ((𝜑𝑌 = 𝑍𝜓) → (𝑃 𝑄) ∈ (Base‘𝐾))
6420, 3, 4hlatjcl 33671 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝐺𝐴𝐻𝐴) → (𝐺 𝐻) ∈ (Base‘𝐾))
6527, 30, 35, 64syl3anc 1318 . . . . . . . . . . 11 ((𝜑𝑌 = 𝑍𝜓) → (𝐺 𝐻) ∈ (Base‘𝐾))
6620, 3latjcl 16874 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑐 ∈ (Base‘𝐾) ∧ (𝐺 𝐻) ∈ (Base‘𝐾)) → (𝑐 (𝐺 𝐻)) ∈ (Base‘𝐾))
6716, 18, 65, 66syl3anc 1318 . . . . . . . . . 10 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 (𝐺 𝐻)) ∈ (Base‘𝐾))
681, 4dalemreb 33945 . . . . . . . . . . 11 (𝜑𝑅 ∈ (Base‘𝐾))
69683ad2ant1 1075 . . . . . . . . . 10 ((𝜑𝑌 = 𝑍𝜓) → 𝑅 ∈ (Base‘𝐾))
7020, 3, 4hlatjcl 33671 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑐𝐴𝐼𝐴) → (𝑐 𝐼) ∈ (Base‘𝐾))
7127, 29, 58, 70syl3anc 1318 . . . . . . . . . 10 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝐼) ∈ (Base‘𝐾))
7220, 2, 3latjlej12 16890 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) ∈ (Base‘𝐾) ∧ (𝑐 (𝐺 𝐻)) ∈ (Base‘𝐾)) ∧ (𝑅 ∈ (Base‘𝐾) ∧ (𝑐 𝐼) ∈ (Base‘𝐾))) → (((𝑃 𝑄) (𝑐 (𝐺 𝐻)) ∧ 𝑅 (𝑐 𝐼)) → ((𝑃 𝑄) 𝑅) ((𝑐 (𝐺 𝐻)) (𝑐 𝐼))))
7316, 63, 67, 69, 71, 72syl122anc 1327 . . . . . . . . 9 ((𝜑𝑌 = 𝑍𝜓) → (((𝑃 𝑄) (𝑐 (𝐺 𝐻)) ∧ 𝑅 (𝑐 𝐼)) → ((𝑃 𝑄) 𝑅) ((𝑐 (𝐺 𝐻)) (𝑐 𝐼))))
7456, 61, 73mp2and 711 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → ((𝑃 𝑄) 𝑅) ((𝑐 (𝐺 𝐻)) (𝑐 𝐼)))
7520, 4atbase 33594 . . . . . . . . . 10 (𝐼𝐴𝐼 ∈ (Base‘𝐾))
7658, 75syl 17 . . . . . . . . 9 ((𝜑𝑌 = 𝑍𝜓) → 𝐼 ∈ (Base‘𝐾))
7720, 3latjjdi 16926 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑐 ∈ (Base‘𝐾) ∧ (𝐺 𝐻) ∈ (Base‘𝐾) ∧ 𝐼 ∈ (Base‘𝐾))) → (𝑐 ((𝐺 𝐻) 𝐼)) = ((𝑐 (𝐺 𝐻)) (𝑐 𝐼)))
7816, 18, 65, 76, 77syl13anc 1320 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 ((𝐺 𝐻) 𝐼)) = ((𝑐 (𝐺 𝐻)) (𝑐 𝐼)))
7974, 78breqtrrd 4611 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → ((𝑃 𝑄) 𝑅) (𝑐 ((𝐺 𝐻) 𝐼)))
808, 79syl5eqbr 4618 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝑌 (𝑐 ((𝐺 𝐻) 𝐼)))
81 breq2 4587 . . . . . 6 ((𝑐 ((𝐺 𝐻) 𝐼)) = ((𝐺 𝐻) 𝐼) → (𝑌 (𝑐 ((𝐺 𝐻) 𝐼)) ↔ 𝑌 ((𝐺 𝐻) 𝐼)))
8280, 81syl5ibcom 234 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → ((𝑐 ((𝐺 𝐻) 𝐼)) = ((𝐺 𝐻) 𝐼) → 𝑌 ((𝐺 𝐻) 𝐼)))
8324, 82sylbid 229 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 ((𝐺 𝐻) 𝐼) → 𝑌 ((𝐺 𝐻) 𝐼)))
841dalemyeo 33936 . . . . . 6 (𝜑𝑌𝑂)
85843ad2ant1 1075 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝑌𝑂)
862, 7lplncmp 33866 . . . . 5 ((𝐾 ∈ HL ∧ 𝑌𝑂 ∧ ((𝐺 𝐻) 𝐼) ∈ 𝑂) → (𝑌 ((𝐺 𝐻) 𝐼) ↔ 𝑌 = ((𝐺 𝐻) 𝐼)))
8727, 85, 19, 86syl3anc 1318 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → (𝑌 ((𝐺 𝐻) 𝐼) ↔ 𝑌 = ((𝐺 𝐻) 𝐼)))
8883, 87sylibd 228 . . 3 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 ((𝐺 𝐻) 𝐼) → 𝑌 = ((𝐺 𝐻) 𝐼)))
8988necon3ad 2795 . 2 ((𝜑𝑌 = 𝑍𝜓) → (𝑌 ≠ ((𝐺 𝐻) 𝐼) → ¬ 𝑐 ((𝐺 𝐻) 𝐼)))
9014, 89mpd 15 1 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝑐 ((𝐺 𝐻) 𝐼))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  cfv 5804  (class class class)co 6549  Basecbs 15695  lecple 15775  joincjn 16767  meetcmee 16768  Latclat 16868  Atomscatm 33568  HLchlt 33655  LPlanesclpl 33796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-lat 16869  df-clat 16931  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-llines 33802  df-lplanes 33803  df-lvols 33804
This theorem is referenced by:  dalem45  34021
  Copyright terms: Public domain W3C validator