Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dalem20 | Structured version Visualization version GIF version |
Description: Lemma for dath 34040. Show that a second dummy atom 𝑑 exists outside of the 𝑌 and 𝑍 planes (when those planes are equal). (Contributed by NM, 14-Aug-2012.) |
Ref | Expression |
---|---|
dalem.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
dalem.l | ⊢ ≤ = (le‘𝐾) |
dalem.j | ⊢ ∨ = (join‘𝐾) |
dalem.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dalem.ps | ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) |
dalem20.o | ⊢ 𝑂 = (LPlanes‘𝐾) |
dalem20.y | ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) |
dalem20.z | ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) |
Ref | Expression |
---|---|
dalem20 | ⊢ ((𝜑 ∧ 𝑌 = 𝑍) → ∃𝑐∃𝑑𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dalem.ph | . . . . 5 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) | |
2 | dalem.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
3 | dalem.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
4 | dalem.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | dalem20.y | . . . . 5 ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) | |
6 | 1, 2, 3, 4, 5 | dalem18 33985 | . . . 4 ⊢ (𝜑 → ∃𝑐 ∈ 𝐴 ¬ 𝑐 ≤ 𝑌) |
7 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 𝑍) → ∃𝑐 ∈ 𝐴 ¬ 𝑐 ≤ 𝑌) |
8 | dalem20.o | . . . . . . 7 ⊢ 𝑂 = (LPlanes‘𝐾) | |
9 | dalem20.z | . . . . . . 7 ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) | |
10 | 1, 2, 3, 4, 8, 5, 9 | dalem19 33986 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑌 = 𝑍) ∧ 𝑐 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌) → ∃𝑑 ∈ 𝐴 (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑))) |
11 | 10 | ex 449 | . . . . 5 ⊢ (((𝜑 ∧ 𝑌 = 𝑍) ∧ 𝑐 ∈ 𝐴) → (¬ 𝑐 ≤ 𝑌 → ∃𝑑 ∈ 𝐴 (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) |
12 | 11 | ancld 574 | . . . 4 ⊢ (((𝜑 ∧ 𝑌 = 𝑍) ∧ 𝑐 ∈ 𝐴) → (¬ 𝑐 ≤ 𝑌 → (¬ 𝑐 ≤ 𝑌 ∧ ∃𝑑 ∈ 𝐴 (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑))))) |
13 | 12 | reximdva 3000 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 𝑍) → (∃𝑐 ∈ 𝐴 ¬ 𝑐 ≤ 𝑌 → ∃𝑐 ∈ 𝐴 (¬ 𝑐 ≤ 𝑌 ∧ ∃𝑑 ∈ 𝐴 (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑))))) |
14 | 7, 13 | mpd 15 | . 2 ⊢ ((𝜑 ∧ 𝑌 = 𝑍) → ∃𝑐 ∈ 𝐴 (¬ 𝑐 ≤ 𝑌 ∧ ∃𝑑 ∈ 𝐴 (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) |
15 | dalem.ps | . . . . 5 ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) | |
16 | 3anass 1035 | . . . . 5 ⊢ (((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑))) ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ (¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑))))) | |
17 | 15, 16 | bitri 263 | . . . 4 ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ (¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑))))) |
18 | 17 | 2exbii 1765 | . . 3 ⊢ (∃𝑐∃𝑑𝜓 ↔ ∃𝑐∃𝑑((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ (¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑))))) |
19 | r2ex 3043 | . . 3 ⊢ (∃𝑐 ∈ 𝐴 ∃𝑑 ∈ 𝐴 (¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑))) ↔ ∃𝑐∃𝑑((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ (¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑))))) | |
20 | r19.42v 3073 | . . . 4 ⊢ (∃𝑑 ∈ 𝐴 (¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑))) ↔ (¬ 𝑐 ≤ 𝑌 ∧ ∃𝑑 ∈ 𝐴 (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) | |
21 | 20 | rexbii 3023 | . . 3 ⊢ (∃𝑐 ∈ 𝐴 ∃𝑑 ∈ 𝐴 (¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑))) ↔ ∃𝑐 ∈ 𝐴 (¬ 𝑐 ≤ 𝑌 ∧ ∃𝑑 ∈ 𝐴 (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) |
22 | 18, 19, 21 | 3bitr2ri 288 | . 2 ⊢ (∃𝑐 ∈ 𝐴 (¬ 𝑐 ≤ 𝑌 ∧ ∃𝑑 ∈ 𝐴 (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑))) ↔ ∃𝑐∃𝑑𝜓) |
23 | 14, 22 | sylib 207 | 1 ⊢ ((𝜑 ∧ 𝑌 = 𝑍) → ∃𝑐∃𝑑𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 195 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∃wex 1695 ∈ wcel 1977 ≠ wne 2780 ∃wrex 2897 class class class wbr 4583 ‘cfv 5804 (class class class)co 6549 Basecbs 15695 lecple 15775 joincjn 16767 Atomscatm 33568 HLchlt 33655 LPlanesclpl 33796 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-preset 16751 df-poset 16769 df-plt 16781 df-lub 16797 df-glb 16798 df-join 16799 df-meet 16800 df-p0 16862 df-p1 16863 df-lat 16869 df-clat 16931 df-oposet 33481 df-ol 33483 df-oml 33484 df-covers 33571 df-ats 33572 df-atl 33603 df-cvlat 33627 df-hlat 33656 df-llines 33802 df-lplanes 33803 |
This theorem is referenced by: dalem62 34038 |
Copyright terms: Public domain | W3C validator |