MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cyggex2 Structured version   Visualization version   GIF version

Theorem cyggex2 18121
Description: The exponent of a cyclic group is 0 if the group is infinite, otherwise it equals the order of the group. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
cygctb.1 𝐵 = (Base‘𝐺)
cyggex.o 𝐸 = (gEx‘𝐺)
Assertion
Ref Expression
cyggex2 (𝐺 ∈ CycGrp → 𝐸 = if(𝐵 ∈ Fin, (#‘𝐵), 0))

Proof of Theorem cyggex2
Dummy variables 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cygctb.1 . . 3 𝐵 = (Base‘𝐺)
2 eqid 2610 . . 3 (.g𝐺) = (.g𝐺)
3 eqid 2610 . . 3 {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵} = {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵}
41, 2, 3iscyg2 18107 . 2 (𝐺 ∈ CycGrp ↔ (𝐺 ∈ Grp ∧ {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵} ≠ ∅))
5 n0 3890 . . . 4 ({𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵} ≠ ∅ ↔ ∃𝑦 𝑦 ∈ {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵})
6 ssrab2 3650 . . . . . . . . 9 {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵} ⊆ 𝐵
7 simpr 476 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑦 ∈ {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵}) → 𝑦 ∈ {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵})
86, 7sseldi 3566 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑦 ∈ {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵}) → 𝑦𝐵)
9 eqid 2610 . . . . . . . . 9 (od‘𝐺) = (od‘𝐺)
101, 2, 3, 9cyggenod2 18110 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑦 ∈ {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵}) → ((od‘𝐺)‘𝑦) = if(𝐵 ∈ Fin, (#‘𝐵), 0))
118, 10jca 553 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑦 ∈ {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵}) → (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = if(𝐵 ∈ Fin, (#‘𝐵), 0)))
1211ex 449 . . . . . 6 (𝐺 ∈ Grp → (𝑦 ∈ {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵} → (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = if(𝐵 ∈ Fin, (#‘𝐵), 0))))
13 cyggex.o . . . . . . . . . 10 𝐸 = (gEx‘𝐺)
141, 13gexcl 17818 . . . . . . . . 9 (𝐺 ∈ Grp → 𝐸 ∈ ℕ0)
1514adantr 480 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = if(𝐵 ∈ Fin, (#‘𝐵), 0))) → 𝐸 ∈ ℕ0)
16 hashcl 13009 . . . . . . . . . 10 (𝐵 ∈ Fin → (#‘𝐵) ∈ ℕ0)
1716adantl 481 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = if(𝐵 ∈ Fin, (#‘𝐵), 0))) ∧ 𝐵 ∈ Fin) → (#‘𝐵) ∈ ℕ0)
18 0nn0 11184 . . . . . . . . . 10 0 ∈ ℕ0
1918a1i 11 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = if(𝐵 ∈ Fin, (#‘𝐵), 0))) ∧ ¬ 𝐵 ∈ Fin) → 0 ∈ ℕ0)
2017, 19ifclda 4070 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = if(𝐵 ∈ Fin, (#‘𝐵), 0))) → if(𝐵 ∈ Fin, (#‘𝐵), 0) ∈ ℕ0)
21 breq2 4587 . . . . . . . . 9 ((#‘𝐵) = if(𝐵 ∈ Fin, (#‘𝐵), 0) → (𝐸 ∥ (#‘𝐵) ↔ 𝐸 ∥ if(𝐵 ∈ Fin, (#‘𝐵), 0)))
22 breq2 4587 . . . . . . . . 9 (0 = if(𝐵 ∈ Fin, (#‘𝐵), 0) → (𝐸 ∥ 0 ↔ 𝐸 ∥ if(𝐵 ∈ Fin, (#‘𝐵), 0)))
231, 13gexdvds3 17828 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) → 𝐸 ∥ (#‘𝐵))
2423adantlr 747 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = if(𝐵 ∈ Fin, (#‘𝐵), 0))) ∧ 𝐵 ∈ Fin) → 𝐸 ∥ (#‘𝐵))
2515adantr 480 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = if(𝐵 ∈ Fin, (#‘𝐵), 0))) ∧ ¬ 𝐵 ∈ Fin) → 𝐸 ∈ ℕ0)
26 nn0z 11277 . . . . . . . . . 10 (𝐸 ∈ ℕ0𝐸 ∈ ℤ)
27 dvds0 14835 . . . . . . . . . 10 (𝐸 ∈ ℤ → 𝐸 ∥ 0)
2825, 26, 273syl 18 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = if(𝐵 ∈ Fin, (#‘𝐵), 0))) ∧ ¬ 𝐵 ∈ Fin) → 𝐸 ∥ 0)
2921, 22, 24, 28ifbothda 4073 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = if(𝐵 ∈ Fin, (#‘𝐵), 0))) → 𝐸 ∥ if(𝐵 ∈ Fin, (#‘𝐵), 0))
30 simprr 792 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = if(𝐵 ∈ Fin, (#‘𝐵), 0))) → ((od‘𝐺)‘𝑦) = if(𝐵 ∈ Fin, (#‘𝐵), 0))
311, 13, 9gexod 17824 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑦𝐵) → ((od‘𝐺)‘𝑦) ∥ 𝐸)
3231adantrr 749 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = if(𝐵 ∈ Fin, (#‘𝐵), 0))) → ((od‘𝐺)‘𝑦) ∥ 𝐸)
3330, 32eqbrtrrd 4607 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = if(𝐵 ∈ Fin, (#‘𝐵), 0))) → if(𝐵 ∈ Fin, (#‘𝐵), 0) ∥ 𝐸)
34 dvdseq 14874 . . . . . . . 8 (((𝐸 ∈ ℕ0 ∧ if(𝐵 ∈ Fin, (#‘𝐵), 0) ∈ ℕ0) ∧ (𝐸 ∥ if(𝐵 ∈ Fin, (#‘𝐵), 0) ∧ if(𝐵 ∈ Fin, (#‘𝐵), 0) ∥ 𝐸)) → 𝐸 = if(𝐵 ∈ Fin, (#‘𝐵), 0))
3515, 20, 29, 33, 34syl22anc 1319 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = if(𝐵 ∈ Fin, (#‘𝐵), 0))) → 𝐸 = if(𝐵 ∈ Fin, (#‘𝐵), 0))
3635ex 449 . . . . . 6 (𝐺 ∈ Grp → ((𝑦𝐵 ∧ ((od‘𝐺)‘𝑦) = if(𝐵 ∈ Fin, (#‘𝐵), 0)) → 𝐸 = if(𝐵 ∈ Fin, (#‘𝐵), 0)))
3712, 36syld 46 . . . . 5 (𝐺 ∈ Grp → (𝑦 ∈ {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵} → 𝐸 = if(𝐵 ∈ Fin, (#‘𝐵), 0)))
3837exlimdv 1848 . . . 4 (𝐺 ∈ Grp → (∃𝑦 𝑦 ∈ {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵} → 𝐸 = if(𝐵 ∈ Fin, (#‘𝐵), 0)))
395, 38syl5bi 231 . . 3 (𝐺 ∈ Grp → ({𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵} ≠ ∅ → 𝐸 = if(𝐵 ∈ Fin, (#‘𝐵), 0)))
4039imp 444 . 2 ((𝐺 ∈ Grp ∧ {𝑥𝐵 ∣ ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝐺)𝑥)) = 𝐵} ≠ ∅) → 𝐸 = if(𝐵 ∈ Fin, (#‘𝐵), 0))
414, 40sylbi 206 1 (𝐺 ∈ CycGrp → 𝐸 = if(𝐵 ∈ Fin, (#‘𝐵), 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1475  wex 1695  wcel 1977  wne 2780  {crab 2900  c0 3874  ifcif 4036   class class class wbr 4583  cmpt 4643  ran crn 5039  cfv 5804  (class class class)co 6549  Fincfn 7841  0cc0 9815  0cn0 11169  cz 11254  #chash 12979  cdvds 14821  Basecbs 15695  Grpcgrp 17245  .gcmg 17363  odcod 17767  gExcgex 17768  CycGrpccyg 18102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-er 7629  df-ec 7631  df-qs 7635  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-dvds 14822  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-eqg 17416  df-od 17771  df-gex 17772  df-cyg 18103
This theorem is referenced by:  cyggex  18122
  Copyright terms: Public domain W3C validator