Proof of Theorem cxple2
Step | Hyp | Ref
| Expression |
1 | | simpl1l 1105 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 <
𝐴) → 𝐴 ∈ ℝ) |
2 | | simpr 476 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 <
𝐴) → 0 < 𝐴) |
3 | 1, 2 | elrpd 11745 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 <
𝐴) → 𝐴 ∈
ℝ+) |
4 | 3 | adantr 480 |
. . . 4
⊢
(((((𝐴 ∈
ℝ ∧ 0 ≤ 𝐴)
∧ (𝐵 ∈ ℝ
∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+)
∧ 0 < 𝐴) ∧ 0
< 𝐵) → 𝐴 ∈
ℝ+) |
5 | | simp2l 1080 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐵 ∈
ℝ) |
6 | 5 | ad2antrr 758 |
. . . . 5
⊢
(((((𝐴 ∈
ℝ ∧ 0 ≤ 𝐴)
∧ (𝐵 ∈ ℝ
∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+)
∧ 0 < 𝐴) ∧ 0
< 𝐵) → 𝐵 ∈
ℝ) |
7 | | simpr 476 |
. . . . 5
⊢
(((((𝐴 ∈
ℝ ∧ 0 ≤ 𝐴)
∧ (𝐵 ∈ ℝ
∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+)
∧ 0 < 𝐴) ∧ 0
< 𝐵) → 0 < 𝐵) |
8 | 6, 7 | elrpd 11745 |
. . . 4
⊢
(((((𝐴 ∈
ℝ ∧ 0 ≤ 𝐴)
∧ (𝐵 ∈ ℝ
∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+)
∧ 0 < 𝐴) ∧ 0
< 𝐵) → 𝐵 ∈
ℝ+) |
9 | | simp3 1056 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈
ℝ+) |
10 | 9 | ad2antrr 758 |
. . . 4
⊢
(((((𝐴 ∈
ℝ ∧ 0 ≤ 𝐴)
∧ (𝐵 ∈ ℝ
∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+)
∧ 0 < 𝐴) ∧ 0
< 𝐵) → 𝐶 ∈
ℝ+) |
11 | | simp3 1056 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐶
∈ ℝ+) → 𝐶 ∈
ℝ+) |
12 | 11 | rpred 11748 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐶
∈ ℝ+) → 𝐶 ∈ ℝ) |
13 | | relogcl 24126 |
. . . . . . . 8
⊢ (𝐴 ∈ ℝ+
→ (log‘𝐴) ∈
ℝ) |
14 | 13 | 3ad2ant1 1075 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐶
∈ ℝ+) → (log‘𝐴) ∈ ℝ) |
15 | 12, 14 | remulcld 9949 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐶
∈ ℝ+) → (𝐶 · (log‘𝐴)) ∈ ℝ) |
16 | | relogcl 24126 |
. . . . . . . 8
⊢ (𝐵 ∈ ℝ+
→ (log‘𝐵) ∈
ℝ) |
17 | 16 | 3ad2ant2 1076 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐶
∈ ℝ+) → (log‘𝐵) ∈ ℝ) |
18 | 12, 17 | remulcld 9949 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐶
∈ ℝ+) → (𝐶 · (log‘𝐵)) ∈ ℝ) |
19 | | efle 14687 |
. . . . . 6
⊢ (((𝐶 · (log‘𝐴)) ∈ ℝ ∧ (𝐶 · (log‘𝐵)) ∈ ℝ) →
((𝐶 ·
(log‘𝐴)) ≤ (𝐶 · (log‘𝐵)) ↔ (exp‘(𝐶 · (log‘𝐴))) ≤ (exp‘(𝐶 · (log‘𝐵))))) |
20 | 15, 18, 19 | syl2anc 691 |
. . . . 5
⊢ ((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐶
∈ ℝ+) → ((𝐶 · (log‘𝐴)) ≤ (𝐶 · (log‘𝐵)) ↔ (exp‘(𝐶 · (log‘𝐴))) ≤ (exp‘(𝐶 · (log‘𝐵))))) |
21 | | efle 14687 |
. . . . . . 7
⊢
(((log‘𝐴)
∈ ℝ ∧ (log‘𝐵) ∈ ℝ) → ((log‘𝐴) ≤ (log‘𝐵) ↔
(exp‘(log‘𝐴))
≤ (exp‘(log‘𝐵)))) |
22 | 14, 17, 21 | syl2anc 691 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐶
∈ ℝ+) → ((log‘𝐴) ≤ (log‘𝐵) ↔ (exp‘(log‘𝐴)) ≤
(exp‘(log‘𝐵)))) |
23 | 14, 17, 11 | lemul2d 11792 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐶
∈ ℝ+) → ((log‘𝐴) ≤ (log‘𝐵) ↔ (𝐶 · (log‘𝐴)) ≤ (𝐶 · (log‘𝐵)))) |
24 | | reeflog 24131 |
. . . . . . . 8
⊢ (𝐴 ∈ ℝ+
→ (exp‘(log‘𝐴)) = 𝐴) |
25 | 24 | 3ad2ant1 1075 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐶
∈ ℝ+) → (exp‘(log‘𝐴)) = 𝐴) |
26 | | reeflog 24131 |
. . . . . . . 8
⊢ (𝐵 ∈ ℝ+
→ (exp‘(log‘𝐵)) = 𝐵) |
27 | 26 | 3ad2ant2 1076 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐶
∈ ℝ+) → (exp‘(log‘𝐵)) = 𝐵) |
28 | 25, 27 | breq12d 4596 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐶
∈ ℝ+) → ((exp‘(log‘𝐴)) ≤ (exp‘(log‘𝐵)) ↔ 𝐴 ≤ 𝐵)) |
29 | 22, 23, 28 | 3bitr3rd 298 |
. . . . 5
⊢ ((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐶
∈ ℝ+) → (𝐴 ≤ 𝐵 ↔ (𝐶 · (log‘𝐴)) ≤ (𝐶 · (log‘𝐵)))) |
30 | | rpre 11715 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℝ+
→ 𝐴 ∈
ℝ) |
31 | 30 | 3ad2ant1 1075 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐶
∈ ℝ+) → 𝐴 ∈ ℝ) |
32 | 31 | recnd 9947 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐶
∈ ℝ+) → 𝐴 ∈ ℂ) |
33 | | rpne0 11724 |
. . . . . . . 8
⊢ (𝐴 ∈ ℝ+
→ 𝐴 ≠
0) |
34 | 33 | 3ad2ant1 1075 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐶
∈ ℝ+) → 𝐴 ≠ 0) |
35 | 12 | recnd 9947 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐶
∈ ℝ+) → 𝐶 ∈ ℂ) |
36 | | cxpef 24211 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐶 ∈ ℂ) → (𝐴↑𝑐𝐶) = (exp‘(𝐶 · (log‘𝐴)))) |
37 | 32, 34, 35, 36 | syl3anc 1318 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐶
∈ ℝ+) → (𝐴↑𝑐𝐶) = (exp‘(𝐶 · (log‘𝐴)))) |
38 | | rpre 11715 |
. . . . . . . . 9
⊢ (𝐵 ∈ ℝ+
→ 𝐵 ∈
ℝ) |
39 | 38 | 3ad2ant2 1076 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐶
∈ ℝ+) → 𝐵 ∈ ℝ) |
40 | 39 | recnd 9947 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐶
∈ ℝ+) → 𝐵 ∈ ℂ) |
41 | | rpne0 11724 |
. . . . . . . 8
⊢ (𝐵 ∈ ℝ+
→ 𝐵 ≠
0) |
42 | 41 | 3ad2ant2 1076 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐶
∈ ℝ+) → 𝐵 ≠ 0) |
43 | | cxpef 24211 |
. . . . . . 7
⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐶 ∈ ℂ) → (𝐵↑𝑐𝐶) = (exp‘(𝐶 · (log‘𝐵)))) |
44 | 40, 42, 35, 43 | syl3anc 1318 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐶
∈ ℝ+) → (𝐵↑𝑐𝐶) = (exp‘(𝐶 · (log‘𝐵)))) |
45 | 37, 44 | breq12d 4596 |
. . . . 5
⊢ ((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐶
∈ ℝ+) → ((𝐴↑𝑐𝐶) ≤ (𝐵↑𝑐𝐶) ↔ (exp‘(𝐶 · (log‘𝐴))) ≤ (exp‘(𝐶 · (log‘𝐵))))) |
46 | 20, 29, 45 | 3bitr4d 299 |
. . . 4
⊢ ((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐶
∈ ℝ+) → (𝐴 ≤ 𝐵 ↔ (𝐴↑𝑐𝐶) ≤ (𝐵↑𝑐𝐶))) |
47 | 4, 8, 10, 46 | syl3anc 1318 |
. . 3
⊢
(((((𝐴 ∈
ℝ ∧ 0 ≤ 𝐴)
∧ (𝐵 ∈ ℝ
∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+)
∧ 0 < 𝐴) ∧ 0
< 𝐵) → (𝐴 ≤ 𝐵 ↔ (𝐴↑𝑐𝐶) ≤ (𝐵↑𝑐𝐶))) |
48 | | 0re 9919 |
. . . . . . . 8
⊢ 0 ∈
ℝ |
49 | | simp1l 1078 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐴 ∈
ℝ) |
50 | | ltnle 9996 |
. . . . . . . 8
⊢ ((0
∈ ℝ ∧ 𝐴
∈ ℝ) → (0 < 𝐴 ↔ ¬ 𝐴 ≤ 0)) |
51 | 48, 49, 50 | sylancr 694 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (0 <
𝐴 ↔ ¬ 𝐴 ≤ 0)) |
52 | 51 | biimpa 500 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 <
𝐴) → ¬ 𝐴 ≤ 0) |
53 | 9 | rpred 11748 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈
ℝ) |
54 | 53 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 <
𝐴) → 𝐶 ∈ ℝ) |
55 | | rpcxpcl 24222 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ+
∧ 𝐶 ∈ ℝ)
→ (𝐴↑𝑐𝐶) ∈
ℝ+) |
56 | 3, 54, 55 | syl2anc 691 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 <
𝐴) → (𝐴↑𝑐𝐶) ∈
ℝ+) |
57 | | rpgt0 11720 |
. . . . . . . . 9
⊢ ((𝐴↑𝑐𝐶) ∈ ℝ+
→ 0 < (𝐴↑𝑐𝐶)) |
58 | | rpre 11715 |
. . . . . . . . . 10
⊢ ((𝐴↑𝑐𝐶) ∈ ℝ+
→ (𝐴↑𝑐𝐶) ∈ ℝ) |
59 | | ltnle 9996 |
. . . . . . . . . 10
⊢ ((0
∈ ℝ ∧ (𝐴↑𝑐𝐶) ∈ ℝ) → (0 < (𝐴↑𝑐𝐶) ↔ ¬ (𝐴↑𝑐𝐶) ≤ 0)) |
60 | 48, 58, 59 | sylancr 694 |
. . . . . . . . 9
⊢ ((𝐴↑𝑐𝐶) ∈ ℝ+
→ (0 < (𝐴↑𝑐𝐶) ↔ ¬ (𝐴↑𝑐𝐶) ≤ 0)) |
61 | 57, 60 | mpbid 221 |
. . . . . . . 8
⊢ ((𝐴↑𝑐𝐶) ∈ ℝ+
→ ¬ (𝐴↑𝑐𝐶) ≤ 0) |
62 | 56, 61 | syl 17 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 <
𝐴) → ¬ (𝐴↑𝑐𝐶) ≤ 0) |
63 | 53 | recnd 9947 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈
ℂ) |
64 | 9 | rpne0d 11753 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐶 ≠ 0) |
65 | | 0cxp 24212 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) →
(0↑𝑐𝐶) = 0) |
66 | 63, 64, 65 | syl2anc 691 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
(0↑𝑐𝐶) = 0) |
67 | 66 | adantr 480 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 <
𝐴) →
(0↑𝑐𝐶) = 0) |
68 | 67 | breq2d 4595 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 <
𝐴) → ((𝐴↑𝑐𝐶) ≤
(0↑𝑐𝐶) ↔ (𝐴↑𝑐𝐶) ≤ 0)) |
69 | 62, 68 | mtbird 314 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 <
𝐴) → ¬ (𝐴↑𝑐𝐶) ≤
(0↑𝑐𝐶)) |
70 | 52, 69 | 2falsed 365 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 <
𝐴) → (𝐴 ≤ 0 ↔ (𝐴↑𝑐𝐶) ≤
(0↑𝑐𝐶))) |
71 | | breq2 4587 |
. . . . . 6
⊢ (0 =
𝐵 → (𝐴 ≤ 0 ↔ 𝐴 ≤ 𝐵)) |
72 | | oveq1 6556 |
. . . . . . 7
⊢ (0 =
𝐵 →
(0↑𝑐𝐶) = (𝐵↑𝑐𝐶)) |
73 | 72 | breq2d 4595 |
. . . . . 6
⊢ (0 =
𝐵 → ((𝐴↑𝑐𝐶) ≤
(0↑𝑐𝐶) ↔ (𝐴↑𝑐𝐶) ≤ (𝐵↑𝑐𝐶))) |
74 | 71, 73 | bibi12d 334 |
. . . . 5
⊢ (0 =
𝐵 → ((𝐴 ≤ 0 ↔ (𝐴↑𝑐𝐶) ≤
(0↑𝑐𝐶)) ↔ (𝐴 ≤ 𝐵 ↔ (𝐴↑𝑐𝐶) ≤ (𝐵↑𝑐𝐶)))) |
75 | 70, 74 | syl5ibcom 234 |
. . . 4
⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 <
𝐴) → (0 = 𝐵 → (𝐴 ≤ 𝐵 ↔ (𝐴↑𝑐𝐶) ≤ (𝐵↑𝑐𝐶)))) |
76 | 75 | imp 444 |
. . 3
⊢
(((((𝐴 ∈
ℝ ∧ 0 ≤ 𝐴)
∧ (𝐵 ∈ ℝ
∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+)
∧ 0 < 𝐴) ∧ 0 =
𝐵) → (𝐴 ≤ 𝐵 ↔ (𝐴↑𝑐𝐶) ≤ (𝐵↑𝑐𝐶))) |
77 | | simp2r 1081 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 0 ≤
𝐵) |
78 | | leloe 10003 |
. . . . . 6
⊢ ((0
∈ ℝ ∧ 𝐵
∈ ℝ) → (0 ≤ 𝐵 ↔ (0 < 𝐵 ∨ 0 = 𝐵))) |
79 | 48, 5, 78 | sylancr 694 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (0 ≤
𝐵 ↔ (0 < 𝐵 ∨ 0 = 𝐵))) |
80 | 77, 79 | mpbid 221 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (0 <
𝐵 ∨ 0 = 𝐵)) |
81 | 80 | adantr 480 |
. . 3
⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 <
𝐴) → (0 < 𝐵 ∨ 0 = 𝐵)) |
82 | 47, 76, 81 | mpjaodan 823 |
. 2
⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 <
𝐴) → (𝐴 ≤ 𝐵 ↔ (𝐴↑𝑐𝐶) ≤ (𝐵↑𝑐𝐶))) |
83 | | simpr 476 |
. . . 4
⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 = 𝐴) → 0 = 𝐴) |
84 | | simpl2r 1108 |
. . . 4
⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 = 𝐴) → 0 ≤ 𝐵) |
85 | 83, 84 | eqbrtrrd 4607 |
. . 3
⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 = 𝐴) → 𝐴 ≤ 𝐵) |
86 | 66 | adantr 480 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 = 𝐴) →
(0↑𝑐𝐶) = 0) |
87 | 83 | oveq1d 6564 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 = 𝐴) →
(0↑𝑐𝐶) = (𝐴↑𝑐𝐶)) |
88 | 86, 87 | eqtr3d 2646 |
. . . 4
⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 = 𝐴) → 0 = (𝐴↑𝑐𝐶)) |
89 | | simpl2l 1107 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 = 𝐴) → 𝐵 ∈ ℝ) |
90 | 53 | adantr 480 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 = 𝐴) → 𝐶 ∈ ℝ) |
91 | | cxpge0 24229 |
. . . . 5
⊢ ((𝐵 ∈ ℝ ∧ 0 ≤
𝐵 ∧ 𝐶 ∈ ℝ) → 0 ≤ (𝐵↑𝑐𝐶)) |
92 | 89, 84, 90, 91 | syl3anc 1318 |
. . . 4
⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 = 𝐴) → 0 ≤ (𝐵↑𝑐𝐶)) |
93 | 88, 92 | eqbrtrrd 4607 |
. . 3
⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 = 𝐴) → (𝐴↑𝑐𝐶) ≤ (𝐵↑𝑐𝐶)) |
94 | 85, 93 | 2thd 254 |
. 2
⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 = 𝐴) → (𝐴 ≤ 𝐵 ↔ (𝐴↑𝑐𝐶) ≤ (𝐵↑𝑐𝐶))) |
95 | | simp1r 1079 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 0 ≤
𝐴) |
96 | | leloe 10003 |
. . . 4
⊢ ((0
∈ ℝ ∧ 𝐴
∈ ℝ) → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴))) |
97 | 48, 49, 96 | sylancr 694 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (0 ≤
𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴))) |
98 | 95, 97 | mpbid 221 |
. 2
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (0 <
𝐴 ∨ 0 = 𝐴)) |
99 | 82, 94, 98 | mpjaodan 823 |
1
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐴 ≤ 𝐵 ↔ (𝐴↑𝑐𝐶) ≤ (𝐵↑𝑐𝐶))) |