MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxp2lim Structured version   Visualization version   GIF version

Theorem cxp2lim 24503
Description: Any power grows slower than any exponential with base greater than 1. (Contributed by Mario Carneiro, 18-Sep-2014.)
Assertion
Ref Expression
cxp2lim ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝑛 ∈ ℝ+ ↦ ((𝑛𝑐𝐴) / (𝐵𝑐𝑛))) ⇝𝑟 0)
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛

Proof of Theorem cxp2lim
StepHypRef Expression
1 1re 9918 . . . . . . . 8 1 ∈ ℝ
2 elicopnf 12140 . . . . . . . 8 (1 ∈ ℝ → (𝑛 ∈ (1[,)+∞) ↔ (𝑛 ∈ ℝ ∧ 1 ≤ 𝑛)))
31, 2ax-mp 5 . . . . . . 7 (𝑛 ∈ (1[,)+∞) ↔ (𝑛 ∈ ℝ ∧ 1 ≤ 𝑛))
43simplbi 475 . . . . . 6 (𝑛 ∈ (1[,)+∞) → 𝑛 ∈ ℝ)
5 0red 9920 . . . . . . 7 (𝑛 ∈ (1[,)+∞) → 0 ∈ ℝ)
61a1i 11 . . . . . . 7 (𝑛 ∈ (1[,)+∞) → 1 ∈ ℝ)
7 0lt1 10429 . . . . . . . 8 0 < 1
87a1i 11 . . . . . . 7 (𝑛 ∈ (1[,)+∞) → 0 < 1)
93simprbi 479 . . . . . . 7 (𝑛 ∈ (1[,)+∞) → 1 ≤ 𝑛)
105, 6, 4, 8, 9ltletrd 10076 . . . . . 6 (𝑛 ∈ (1[,)+∞) → 0 < 𝑛)
114, 10elrpd 11745 . . . . 5 (𝑛 ∈ (1[,)+∞) → 𝑛 ∈ ℝ+)
1211ssriv 3572 . . . 4 (1[,)+∞) ⊆ ℝ+
13 resmpt 5369 . . . 4 ((1[,)+∞) ⊆ ℝ+ → ((𝑛 ∈ ℝ+ ↦ ((𝑛𝑐𝐴) / (𝐵𝑐𝑛))) ↾ (1[,)+∞)) = (𝑛 ∈ (1[,)+∞) ↦ ((𝑛𝑐𝐴) / (𝐵𝑐𝑛))))
1412, 13ax-mp 5 . . 3 ((𝑛 ∈ ℝ+ ↦ ((𝑛𝑐𝐴) / (𝐵𝑐𝑛))) ↾ (1[,)+∞)) = (𝑛 ∈ (1[,)+∞) ↦ ((𝑛𝑐𝐴) / (𝐵𝑐𝑛)))
15 0red 9920 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 0 ∈ ℝ)
1612a1i 11 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (1[,)+∞) ⊆ ℝ+)
17 rpre 11715 . . . . . . . . . 10 (𝑛 ∈ ℝ+𝑛 ∈ ℝ)
1817adantl 481 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → 𝑛 ∈ ℝ)
19 rpge0 11721 . . . . . . . . . 10 (𝑛 ∈ ℝ+ → 0 ≤ 𝑛)
2019adantl 481 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → 0 ≤ 𝑛)
21 simpl2 1058 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → 𝐵 ∈ ℝ)
22 0red 9920 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → 0 ∈ ℝ)
231a1i 11 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → 1 ∈ ℝ)
247a1i 11 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → 0 < 1)
25 simpl3 1059 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → 1 < 𝐵)
2622, 23, 21, 24, 25lttrd 10077 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → 0 < 𝐵)
2721, 26elrpd 11745 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → 𝐵 ∈ ℝ+)
2827, 18rpcxpcld 24276 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → (𝐵𝑐𝑛) ∈ ℝ+)
29 simp1 1054 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐴 ∈ ℝ)
30 ifcl 4080 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → if(1 ≤ 𝐴, 𝐴, 1) ∈ ℝ)
3129, 1, 30sylancl 693 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → if(1 ≤ 𝐴, 𝐴, 1) ∈ ℝ)
321a1i 11 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 1 ∈ ℝ)
337a1i 11 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 0 < 1)
34 max1 11890 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 1 ≤ if(1 ≤ 𝐴, 𝐴, 1))
351, 29, 34sylancr 694 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 1 ≤ if(1 ≤ 𝐴, 𝐴, 1))
3615, 32, 31, 33, 35ltletrd 10076 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 0 < if(1 ≤ 𝐴, 𝐴, 1))
3731, 36elrpd 11745 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → if(1 ≤ 𝐴, 𝐴, 1) ∈ ℝ+)
3837rprecred 11759 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (1 / if(1 ≤ 𝐴, 𝐴, 1)) ∈ ℝ)
3938adantr 480 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → (1 / if(1 ≤ 𝐴, 𝐴, 1)) ∈ ℝ)
4028, 39rpcxpcld 24276 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))) ∈ ℝ+)
4131recnd 9947 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → if(1 ≤ 𝐴, 𝐴, 1) ∈ ℂ)
4241adantr 480 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → if(1 ≤ 𝐴, 𝐴, 1) ∈ ℂ)
4318, 20, 40, 42divcxpd 24268 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝑛 / ((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))))↑𝑐if(1 ≤ 𝐴, 𝐴, 1)) = ((𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) / (((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1)))↑𝑐if(1 ≤ 𝐴, 𝐴, 1))))
4437adantr 480 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → if(1 ≤ 𝐴, 𝐴, 1) ∈ ℝ+)
4544rpne0d 11753 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → if(1 ≤ 𝐴, 𝐴, 1) ≠ 0)
4642, 45recid2d 10676 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → ((1 / if(1 ≤ 𝐴, 𝐴, 1)) · if(1 ≤ 𝐴, 𝐴, 1)) = 1)
4746oveq2d 6565 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝐵𝑐𝑛)↑𝑐((1 / if(1 ≤ 𝐴, 𝐴, 1)) · if(1 ≤ 𝐴, 𝐴, 1))) = ((𝐵𝑐𝑛)↑𝑐1))
4828, 39, 42cxpmuld 24280 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝐵𝑐𝑛)↑𝑐((1 / if(1 ≤ 𝐴, 𝐴, 1)) · if(1 ≤ 𝐴, 𝐴, 1))) = (((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1)))↑𝑐if(1 ≤ 𝐴, 𝐴, 1)))
4928rpcnd 11750 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → (𝐵𝑐𝑛) ∈ ℂ)
5049cxp1d 24252 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝐵𝑐𝑛)↑𝑐1) = (𝐵𝑐𝑛))
5147, 48, 503eqtr3d 2652 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → (((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1)))↑𝑐if(1 ≤ 𝐴, 𝐴, 1)) = (𝐵𝑐𝑛))
5251oveq2d 6565 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) / (((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1)))↑𝑐if(1 ≤ 𝐴, 𝐴, 1))) = ((𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) / (𝐵𝑐𝑛)))
5343, 52eqtrd 2644 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝑛 / ((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))))↑𝑐if(1 ≤ 𝐴, 𝐴, 1)) = ((𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) / (𝐵𝑐𝑛)))
5453mpteq2dva 4672 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝑛 ∈ ℝ+ ↦ ((𝑛 / ((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))))↑𝑐if(1 ≤ 𝐴, 𝐴, 1))) = (𝑛 ∈ ℝ+ ↦ ((𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) / (𝐵𝑐𝑛))))
55 ovex 6577 . . . . . . . 8 (𝑛 / ((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1)))) ∈ V
5655a1i 11 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → (𝑛 / ((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1)))) ∈ V)
5718recnd 9947 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → 𝑛 ∈ ℂ)
5838recnd 9947 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (1 / if(1 ≤ 𝐴, 𝐴, 1)) ∈ ℂ)
5958adantr 480 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → (1 / if(1 ≤ 𝐴, 𝐴, 1)) ∈ ℂ)
6057, 59mulcomd 9940 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → (𝑛 · (1 / if(1 ≤ 𝐴, 𝐴, 1))) = ((1 / if(1 ≤ 𝐴, 𝐴, 1)) · 𝑛))
6160oveq2d 6565 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → (𝐵𝑐(𝑛 · (1 / if(1 ≤ 𝐴, 𝐴, 1)))) = (𝐵𝑐((1 / if(1 ≤ 𝐴, 𝐴, 1)) · 𝑛)))
6227, 18, 59cxpmuld 24280 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → (𝐵𝑐(𝑛 · (1 / if(1 ≤ 𝐴, 𝐴, 1)))) = ((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))))
6327, 39, 57cxpmuld 24280 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → (𝐵𝑐((1 / if(1 ≤ 𝐴, 𝐴, 1)) · 𝑛)) = ((𝐵𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1)))↑𝑐𝑛))
6461, 62, 633eqtr3d 2652 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))) = ((𝐵𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1)))↑𝑐𝑛))
6564oveq2d 6565 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → (𝑛 / ((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1)))) = (𝑛 / ((𝐵𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1)))↑𝑐𝑛)))
6665mpteq2dva 4672 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝑛 ∈ ℝ+ ↦ (𝑛 / ((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))))) = (𝑛 ∈ ℝ+ ↦ (𝑛 / ((𝐵𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1)))↑𝑐𝑛))))
67 simp2 1055 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐵 ∈ ℝ)
68 simp3 1056 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 1 < 𝐵)
6915, 32, 67, 33, 68lttrd 10077 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 0 < 𝐵)
7067, 69elrpd 11745 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐵 ∈ ℝ+)
7170, 38rpcxpcld 24276 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝐵𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))) ∈ ℝ+)
7271rpred 11748 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝐵𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))) ∈ ℝ)
73581cxpd 24253 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (1↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))) = 1)
74 0le1 10430 . . . . . . . . . . . . 13 0 ≤ 1
7574a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 0 ≤ 1)
7670rpge0d 11752 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 0 ≤ 𝐵)
7737rpreccld 11758 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (1 / if(1 ≤ 𝐴, 𝐴, 1)) ∈ ℝ+)
7832, 75, 67, 76, 77cxplt2d 24272 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (1 < 𝐵 ↔ (1↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))) < (𝐵𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1)))))
7968, 78mpbid 221 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (1↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))) < (𝐵𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))))
8073, 79eqbrtrrd 4607 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 1 < (𝐵𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))))
81 cxp2limlem 24502 . . . . . . . . 9 (((𝐵𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))) ∈ ℝ ∧ 1 < (𝐵𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1)))) → (𝑛 ∈ ℝ+ ↦ (𝑛 / ((𝐵𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1)))↑𝑐𝑛))) ⇝𝑟 0)
8272, 80, 81syl2anc 691 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝑛 ∈ ℝ+ ↦ (𝑛 / ((𝐵𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1)))↑𝑐𝑛))) ⇝𝑟 0)
8366, 82eqbrtrd 4605 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝑛 ∈ ℝ+ ↦ (𝑛 / ((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))))) ⇝𝑟 0)
8456, 83, 37rlimcxp 24500 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝑛 ∈ ℝ+ ↦ ((𝑛 / ((𝐵𝑐𝑛)↑𝑐(1 / if(1 ≤ 𝐴, 𝐴, 1))))↑𝑐if(1 ≤ 𝐴, 𝐴, 1))) ⇝𝑟 0)
8554, 84eqbrtrrd 4607 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝑛 ∈ ℝ+ ↦ ((𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) / (𝐵𝑐𝑛))) ⇝𝑟 0)
8616, 85rlimres2 14140 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝑛 ∈ (1[,)+∞) ↦ ((𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) / (𝐵𝑐𝑛))) ⇝𝑟 0)
87 simpr 476 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → 𝑛 ∈ ℝ+)
8831adantr 480 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → if(1 ≤ 𝐴, 𝐴, 1) ∈ ℝ)
8987, 88rpcxpcld 24276 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → (𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) ∈ ℝ+)
9089, 28rpdivcld 11765 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) / (𝐵𝑐𝑛)) ∈ ℝ+)
9190rpred 11748 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) / (𝐵𝑐𝑛)) ∈ ℝ)
9211, 91sylan2 490 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → ((𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) / (𝐵𝑐𝑛)) ∈ ℝ)
93 simpl1 1057 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ)
9487, 93rpcxpcld 24276 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → (𝑛𝑐𝐴) ∈ ℝ+)
9594, 28rpdivcld 11765 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝑛𝑐𝐴) / (𝐵𝑐𝑛)) ∈ ℝ+)
9611, 95sylan2 490 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → ((𝑛𝑐𝐴) / (𝐵𝑐𝑛)) ∈ ℝ+)
9796rpred 11748 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → ((𝑛𝑐𝐴) / (𝐵𝑐𝑛)) ∈ ℝ)
9811, 94sylan2 490 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → (𝑛𝑐𝐴) ∈ ℝ+)
9998rpred 11748 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → (𝑛𝑐𝐴) ∈ ℝ)
10011, 89sylan2 490 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → (𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) ∈ ℝ+)
101100rpred 11748 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → (𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) ∈ ℝ)
10211, 28sylan2 490 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → (𝐵𝑐𝑛) ∈ ℝ+)
1034adantl 481 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → 𝑛 ∈ ℝ)
1049adantl 481 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → 1 ≤ 𝑛)
105 simpl1 1057 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → 𝐴 ∈ ℝ)
10631adantr 480 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → if(1 ≤ 𝐴, 𝐴, 1) ∈ ℝ)
107 max2 11892 . . . . . . . 8 ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 𝐴 ≤ if(1 ≤ 𝐴, 𝐴, 1))
1081, 105, 107sylancr 694 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → 𝐴 ≤ if(1 ≤ 𝐴, 𝐴, 1))
109103, 104, 105, 106, 108cxplead 24267 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → (𝑛𝑐𝐴) ≤ (𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)))
11099, 101, 102, 109lediv1dd 11806 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → ((𝑛𝑐𝐴) / (𝐵𝑐𝑛)) ≤ ((𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) / (𝐵𝑐𝑛)))
111110adantrr 749 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ (1[,)+∞) ∧ 0 ≤ 𝑛)) → ((𝑛𝑐𝐴) / (𝐵𝑐𝑛)) ≤ ((𝑛𝑐if(1 ≤ 𝐴, 𝐴, 1)) / (𝐵𝑐𝑛)))
11296rpge0d 11752 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ (1[,)+∞)) → 0 ≤ ((𝑛𝑐𝐴) / (𝐵𝑐𝑛)))
113112adantrr 749 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ (1[,)+∞) ∧ 0 ≤ 𝑛)) → 0 ≤ ((𝑛𝑐𝐴) / (𝐵𝑐𝑛)))
11415, 15, 86, 92, 97, 111, 113rlimsqz2 14229 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝑛 ∈ (1[,)+∞) ↦ ((𝑛𝑐𝐴) / (𝐵𝑐𝑛))) ⇝𝑟 0)
11514, 114syl5eqbr 4618 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ((𝑛 ∈ ℝ+ ↦ ((𝑛𝑐𝐴) / (𝐵𝑐𝑛))) ↾ (1[,)+∞)) ⇝𝑟 0)
11695rpcnd 11750 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑛 ∈ ℝ+) → ((𝑛𝑐𝐴) / (𝐵𝑐𝑛)) ∈ ℂ)
117 eqid 2610 . . . 4 (𝑛 ∈ ℝ+ ↦ ((𝑛𝑐𝐴) / (𝐵𝑐𝑛))) = (𝑛 ∈ ℝ+ ↦ ((𝑛𝑐𝐴) / (𝐵𝑐𝑛)))
118116, 117fmptd 6292 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝑛 ∈ ℝ+ ↦ ((𝑛𝑐𝐴) / (𝐵𝑐𝑛))):ℝ+⟶ℂ)
119 rpssre 11719 . . . 4 + ⊆ ℝ
120119a1i 11 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ℝ+ ⊆ ℝ)
121118, 120, 32rlimresb 14144 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ((𝑛 ∈ ℝ+ ↦ ((𝑛𝑐𝐴) / (𝐵𝑐𝑛))) ⇝𝑟 0 ↔ ((𝑛 ∈ ℝ+ ↦ ((𝑛𝑐𝐴) / (𝐵𝑐𝑛))) ↾ (1[,)+∞)) ⇝𝑟 0))
122115, 121mpbird 246 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝑛 ∈ ℝ+ ↦ ((𝑛𝑐𝐴) / (𝐵𝑐𝑛))) ⇝𝑟 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  Vcvv 3173  wss 3540  ifcif 4036   class class class wbr 4583  cmpt 4643  cres 5040  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   · cmul 9820  +∞cpnf 9950   < clt 9953  cle 9954   / cdiv 10563  +crp 11708  [,)cico 12048  𝑟 crli 14064  𝑐ccxp 24106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107  df-cxp 24108
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator