Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvr2N Structured version   Visualization version   GIF version

Theorem cvr2N 33715
 Description: Less-than and covers equivalence in a Hilbert lattice. (chcv2 28599 analog.) (Contributed by NM, 7-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
cvr2.b 𝐵 = (Base‘𝐾)
cvr2.s < = (lt‘𝐾)
cvr2.j = (join‘𝐾)
cvr2.c 𝐶 = ( ⋖ ‘𝐾)
cvr2.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cvr2N ((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) → (𝑋 < (𝑋 𝑃) ↔ 𝑋𝐶(𝑋 𝑃)))

Proof of Theorem cvr2N
StepHypRef Expression
1 hllat 33668 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
213ad2ant1 1075 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) → 𝐾 ∈ Lat)
3 simp2 1055 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) → 𝑋𝐵)
4 cvr2.b . . . . 5 𝐵 = (Base‘𝐾)
5 cvr2.a . . . . 5 𝐴 = (Atoms‘𝐾)
64, 5atbase 33594 . . . 4 (𝑃𝐴𝑃𝐵)
763ad2ant3 1077 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) → 𝑃𝐵)
8 eqid 2610 . . . 4 (le‘𝐾) = (le‘𝐾)
9 cvr2.s . . . 4 < = (lt‘𝐾)
10 cvr2.j . . . 4 = (join‘𝐾)
114, 8, 9, 10latnle 16908 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑃𝐵) → (¬ 𝑃(le‘𝐾)𝑋𝑋 < (𝑋 𝑃)))
122, 3, 7, 11syl3anc 1318 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) → (¬ 𝑃(le‘𝐾)𝑋𝑋 < (𝑋 𝑃)))
13 cvr2.c . . 3 𝐶 = ( ⋖ ‘𝐾)
144, 8, 10, 13, 5cvr1 33714 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) → (¬ 𝑃(le‘𝐾)𝑋𝑋𝐶(𝑋 𝑃)))
1512, 14bitr3d 269 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) → (𝑋 < (𝑋 𝑃) ↔ 𝑋𝐶(𝑋 𝑃)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549  Basecbs 15695  lecple 15775  ltcplt 16764  joincjn 16767  Latclat 16868   ⋖ ccvr 33567  Atomscatm 33568  HLchlt 33655 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-lat 16869  df-clat 16931  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656 This theorem is referenced by:  cvrval4N  33718
 Copyright terms: Public domain W3C validator