Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftphtlem Structured version   Visualization version   GIF version

Theorem cvmliftphtlem 30553
Description: Lemma for cvmliftpht 30554. (Contributed by Mario Carneiro, 6-Jul-2015.)
Hypotheses
Ref Expression
cvmliftpht.b 𝐵 = 𝐶
cvmliftpht.m 𝑀 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃))
cvmliftpht.n 𝑁 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃))
cvmliftpht.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmliftpht.p (𝜑𝑃𝐵)
cvmliftpht.e (𝜑 → (𝐹𝑃) = (𝐺‘0))
cvmliftphtlem.g (𝜑𝐺 ∈ (II Cn 𝐽))
cvmliftphtlem.h (𝜑𝐻 ∈ (II Cn 𝐽))
cvmliftphtlem.k (𝜑𝐾 ∈ (𝐺(PHtpy‘𝐽)𝐻))
cvmliftphtlem.a (𝜑𝐴 ∈ ((II ×t II) Cn 𝐶))
cvmliftphtlem.c (𝜑 → (𝐹𝐴) = 𝐾)
cvmliftphtlem.0 (𝜑 → (0𝐴0) = 𝑃)
Assertion
Ref Expression
cvmliftphtlem (𝜑𝐴 ∈ (𝑀(PHtpy‘𝐶)𝑁))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝑓,𝐹   𝑓,𝐽   𝐶,𝑓   𝑓,𝐺   𝑓,𝐻   𝑃,𝑓
Allowed substitution hints:   𝜑(𝑓)   𝐾(𝑓)   𝑀(𝑓)   𝑁(𝑓)

Proof of Theorem cvmliftphtlem
Dummy variables 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmliftpht.b . . . 4 𝐵 = 𝐶
2 cvmliftpht.m . . . 4 𝑀 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃))
3 cvmliftpht.f . . . 4 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
4 cvmliftphtlem.g . . . 4 (𝜑𝐺 ∈ (II Cn 𝐽))
5 cvmliftpht.p . . . 4 (𝜑𝑃𝐵)
6 cvmliftpht.e . . . 4 (𝜑 → (𝐹𝑃) = (𝐺‘0))
71, 2, 3, 4, 5, 6cvmliftiota 30537 . . 3 (𝜑 → (𝑀 ∈ (II Cn 𝐶) ∧ (𝐹𝑀) = 𝐺 ∧ (𝑀‘0) = 𝑃))
87simp1d 1066 . 2 (𝜑𝑀 ∈ (II Cn 𝐶))
9 cvmliftpht.n . . . 4 𝑁 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃))
10 cvmliftphtlem.h . . . 4 (𝜑𝐻 ∈ (II Cn 𝐽))
11 cvmliftphtlem.k . . . . . . 7 (𝜑𝐾 ∈ (𝐺(PHtpy‘𝐽)𝐻))
124, 10, 11phtpy01 22592 . . . . . 6 (𝜑 → ((𝐺‘0) = (𝐻‘0) ∧ (𝐺‘1) = (𝐻‘1)))
1312simpld 474 . . . . 5 (𝜑 → (𝐺‘0) = (𝐻‘0))
146, 13eqtrd 2644 . . . 4 (𝜑 → (𝐹𝑃) = (𝐻‘0))
151, 9, 3, 10, 5, 14cvmliftiota 30537 . . 3 (𝜑 → (𝑁 ∈ (II Cn 𝐶) ∧ (𝐹𝑁) = 𝐻 ∧ (𝑁‘0) = 𝑃))
1615simp1d 1066 . 2 (𝜑𝑁 ∈ (II Cn 𝐶))
17 cvmliftphtlem.a . 2 (𝜑𝐴 ∈ ((II ×t II) Cn 𝐶))
18 iitop 22491 . . . . . . . . . . . . . . . 16 II ∈ Top
19 iiuni 22492 . . . . . . . . . . . . . . . 16 (0[,]1) = II
2018, 18, 19, 19txunii 21206 . . . . . . . . . . . . . . 15 ((0[,]1) × (0[,]1)) = (II ×t II)
2120, 1cnf 20860 . . . . . . . . . . . . . 14 (𝐴 ∈ ((II ×t II) Cn 𝐶) → 𝐴:((0[,]1) × (0[,]1))⟶𝐵)
2217, 21syl 17 . . . . . . . . . . . . 13 (𝜑𝐴:((0[,]1) × (0[,]1))⟶𝐵)
23 0elunit 12161 . . . . . . . . . . . . . 14 0 ∈ (0[,]1)
24 opelxpi 5072 . . . . . . . . . . . . . 14 ((𝑠 ∈ (0[,]1) ∧ 0 ∈ (0[,]1)) → ⟨𝑠, 0⟩ ∈ ((0[,]1) × (0[,]1)))
2523, 24mpan2 703 . . . . . . . . . . . . 13 (𝑠 ∈ (0[,]1) → ⟨𝑠, 0⟩ ∈ ((0[,]1) × (0[,]1)))
26 fvco3 6185 . . . . . . . . . . . . 13 ((𝐴:((0[,]1) × (0[,]1))⟶𝐵 ∧ ⟨𝑠, 0⟩ ∈ ((0[,]1) × (0[,]1))) → ((𝐹𝐴)‘⟨𝑠, 0⟩) = (𝐹‘(𝐴‘⟨𝑠, 0⟩)))
2722, 25, 26syl2an 493 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹𝐴)‘⟨𝑠, 0⟩) = (𝐹‘(𝐴‘⟨𝑠, 0⟩)))
28 cvmliftphtlem.c . . . . . . . . . . . . . 14 (𝜑 → (𝐹𝐴) = 𝐾)
2928adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹𝐴) = 𝐾)
3029fveq1d 6105 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹𝐴)‘⟨𝑠, 0⟩) = (𝐾‘⟨𝑠, 0⟩))
3127, 30eqtr3d 2646 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘(𝐴‘⟨𝑠, 0⟩)) = (𝐾‘⟨𝑠, 0⟩))
32 df-ov 6552 . . . . . . . . . . . 12 (𝑠𝐴0) = (𝐴‘⟨𝑠, 0⟩)
3332fveq2i 6106 . . . . . . . . . . 11 (𝐹‘(𝑠𝐴0)) = (𝐹‘(𝐴‘⟨𝑠, 0⟩))
34 df-ov 6552 . . . . . . . . . . 11 (𝑠𝐾0) = (𝐾‘⟨𝑠, 0⟩)
3531, 33, 343eqtr4g 2669 . . . . . . . . . 10 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘(𝑠𝐴0)) = (𝑠𝐾0))
36 iitopon 22490 . . . . . . . . . . . . 13 II ∈ (TopOn‘(0[,]1))
3736a1i 11 . . . . . . . . . . . 12 (𝜑 → II ∈ (TopOn‘(0[,]1)))
384, 10phtpyhtpy 22589 . . . . . . . . . . . . 13 (𝜑 → (𝐺(PHtpy‘𝐽)𝐻) ⊆ (𝐺(II Htpy 𝐽)𝐻))
3938, 11sseldd 3569 . . . . . . . . . . . 12 (𝜑𝐾 ∈ (𝐺(II Htpy 𝐽)𝐻))
4037, 4, 10, 39htpyi 22581 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (0[,]1)) → ((𝑠𝐾0) = (𝐺𝑠) ∧ (𝑠𝐾1) = (𝐻𝑠)))
4140simpld 474 . . . . . . . . . 10 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝐾0) = (𝐺𝑠))
4235, 41eqtrd 2644 . . . . . . . . 9 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘(𝑠𝐴0)) = (𝐺𝑠))
4342mpteq2dva 4672 . . . . . . . 8 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (𝐹‘(𝑠𝐴0))) = (𝑠 ∈ (0[,]1) ↦ (𝐺𝑠)))
44 fovrn 6702 . . . . . . . . . . 11 ((𝐴:((0[,]1) × (0[,]1))⟶𝐵𝑠 ∈ (0[,]1) ∧ 0 ∈ (0[,]1)) → (𝑠𝐴0) ∈ 𝐵)
4523, 44mp3an3 1405 . . . . . . . . . 10 ((𝐴:((0[,]1) × (0[,]1))⟶𝐵𝑠 ∈ (0[,]1)) → (𝑠𝐴0) ∈ 𝐵)
4622, 45sylan 487 . . . . . . . . 9 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝐴0) ∈ 𝐵)
47 eqidd 2611 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)) = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)))
48 cvmcn 30498 . . . . . . . . . . . 12 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽))
493, 48syl 17 . . . . . . . . . . 11 (𝜑𝐹 ∈ (𝐶 Cn 𝐽))
50 eqid 2610 . . . . . . . . . . . 12 𝐽 = 𝐽
511, 50cnf 20860 . . . . . . . . . . 11 (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵 𝐽)
5249, 51syl 17 . . . . . . . . . 10 (𝜑𝐹:𝐵 𝐽)
5352feqmptd 6159 . . . . . . . . 9 (𝜑𝐹 = (𝑥𝐵 ↦ (𝐹𝑥)))
54 fveq2 6103 . . . . . . . . 9 (𝑥 = (𝑠𝐴0) → (𝐹𝑥) = (𝐹‘(𝑠𝐴0)))
5546, 47, 53, 54fmptco 6303 . . . . . . . 8 (𝜑 → (𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0))) = (𝑠 ∈ (0[,]1) ↦ (𝐹‘(𝑠𝐴0))))
5619, 50cnf 20860 . . . . . . . . . 10 (𝐺 ∈ (II Cn 𝐽) → 𝐺:(0[,]1)⟶ 𝐽)
574, 56syl 17 . . . . . . . . 9 (𝜑𝐺:(0[,]1)⟶ 𝐽)
5857feqmptd 6159 . . . . . . . 8 (𝜑𝐺 = (𝑠 ∈ (0[,]1) ↦ (𝐺𝑠)))
5943, 55, 583eqtr4d 2654 . . . . . . 7 (𝜑 → (𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0))) = 𝐺)
60 cvmliftphtlem.0 . . . . . . 7 (𝜑 → (0𝐴0) = 𝑃)
6137cnmptid 21274 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (0[,]1) ↦ 𝑠) ∈ (II Cn II))
6223a1i 11 . . . . . . . . . 10 (𝜑 → 0 ∈ (0[,]1))
6337, 37, 62cnmptc 21275 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (0[,]1) ↦ 0) ∈ (II Cn II))
6437, 61, 63, 17cnmpt12f 21279 . . . . . . . 8 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)) ∈ (II Cn 𝐶))
651cvmlift 30535 . . . . . . . . 9 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽)) ∧ (𝑃𝐵 ∧ (𝐹𝑃) = (𝐺‘0))) → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃))
663, 4, 5, 6, 65syl22anc 1319 . . . . . . . 8 (𝜑 → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃))
67 coeq2 5202 . . . . . . . . . . 11 (𝑓 = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)) → (𝐹𝑓) = (𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0))))
6867eqeq1d 2612 . . . . . . . . . 10 (𝑓 = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)) → ((𝐹𝑓) = 𝐺 ↔ (𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0))) = 𝐺))
69 fveq1 6102 . . . . . . . . . . . 12 (𝑓 = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)) → (𝑓‘0) = ((𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0))‘0))
70 oveq1 6556 . . . . . . . . . . . . . 14 (𝑠 = 0 → (𝑠𝐴0) = (0𝐴0))
71 eqid 2610 . . . . . . . . . . . . . 14 (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)) = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0))
72 ovex 6577 . . . . . . . . . . . . . 14 (0𝐴0) ∈ V
7370, 71, 72fvmpt 6191 . . . . . . . . . . . . 13 (0 ∈ (0[,]1) → ((𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0))‘0) = (0𝐴0))
7423, 73ax-mp 5 . . . . . . . . . . . 12 ((𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0))‘0) = (0𝐴0)
7569, 74syl6eq 2660 . . . . . . . . . . 11 (𝑓 = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)) → (𝑓‘0) = (0𝐴0))
7675eqeq1d 2612 . . . . . . . . . 10 (𝑓 = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)) → ((𝑓‘0) = 𝑃 ↔ (0𝐴0) = 𝑃))
7768, 76anbi12d 743 . . . . . . . . 9 (𝑓 = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)) → (((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃) ↔ ((𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0))) = 𝐺 ∧ (0𝐴0) = 𝑃)))
7877riota2 6533 . . . . . . . 8 (((𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)) ∈ (II Cn 𝐶) ∧ ∃!𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) → (((𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0))) = 𝐺 ∧ (0𝐴0) = 𝑃) ↔ (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0))))
7964, 66, 78syl2anc 691 . . . . . . 7 (𝜑 → (((𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0))) = 𝐺 ∧ (0𝐴0) = 𝑃) ↔ (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0))))
8059, 60, 79mpbi2and 958 . . . . . 6 (𝜑 → (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)))
812, 80syl5eq 2656 . . . . 5 (𝜑𝑀 = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)))
8219, 1cnf 20860 . . . . . . 7 (𝑀 ∈ (II Cn 𝐶) → 𝑀:(0[,]1)⟶𝐵)
838, 82syl 17 . . . . . 6 (𝜑𝑀:(0[,]1)⟶𝐵)
8483feqmptd 6159 . . . . 5 (𝜑𝑀 = (𝑠 ∈ (0[,]1) ↦ (𝑀𝑠)))
8581, 84eqtr3d 2646 . . . 4 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)) = (𝑠 ∈ (0[,]1) ↦ (𝑀𝑠)))
86 mpteqb 6207 . . . . 5 (∀𝑠 ∈ (0[,]1)(𝑠𝐴0) ∈ V → ((𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)) = (𝑠 ∈ (0[,]1) ↦ (𝑀𝑠)) ↔ ∀𝑠 ∈ (0[,]1)(𝑠𝐴0) = (𝑀𝑠)))
87 ovex 6577 . . . . . 6 (𝑠𝐴0) ∈ V
8887a1i 11 . . . . 5 (𝑠 ∈ (0[,]1) → (𝑠𝐴0) ∈ V)
8986, 88mprg 2910 . . . 4 ((𝑠 ∈ (0[,]1) ↦ (𝑠𝐴0)) = (𝑠 ∈ (0[,]1) ↦ (𝑀𝑠)) ↔ ∀𝑠 ∈ (0[,]1)(𝑠𝐴0) = (𝑀𝑠))
9085, 89sylib 207 . . 3 (𝜑 → ∀𝑠 ∈ (0[,]1)(𝑠𝐴0) = (𝑀𝑠))
9190r19.21bi 2916 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝐴0) = (𝑀𝑠))
92 1elunit 12162 . . . . . . . . . . . . . 14 1 ∈ (0[,]1)
93 opelxpi 5072 . . . . . . . . . . . . . 14 ((𝑠 ∈ (0[,]1) ∧ 1 ∈ (0[,]1)) → ⟨𝑠, 1⟩ ∈ ((0[,]1) × (0[,]1)))
9492, 93mpan2 703 . . . . . . . . . . . . 13 (𝑠 ∈ (0[,]1) → ⟨𝑠, 1⟩ ∈ ((0[,]1) × (0[,]1)))
95 fvco3 6185 . . . . . . . . . . . . 13 ((𝐴:((0[,]1) × (0[,]1))⟶𝐵 ∧ ⟨𝑠, 1⟩ ∈ ((0[,]1) × (0[,]1))) → ((𝐹𝐴)‘⟨𝑠, 1⟩) = (𝐹‘(𝐴‘⟨𝑠, 1⟩)))
9622, 94, 95syl2an 493 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹𝐴)‘⟨𝑠, 1⟩) = (𝐹‘(𝐴‘⟨𝑠, 1⟩)))
9729fveq1d 6105 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹𝐴)‘⟨𝑠, 1⟩) = (𝐾‘⟨𝑠, 1⟩))
9896, 97eqtr3d 2646 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘(𝐴‘⟨𝑠, 1⟩)) = (𝐾‘⟨𝑠, 1⟩))
99 df-ov 6552 . . . . . . . . . . . 12 (𝑠𝐴1) = (𝐴‘⟨𝑠, 1⟩)
10099fveq2i 6106 . . . . . . . . . . 11 (𝐹‘(𝑠𝐴1)) = (𝐹‘(𝐴‘⟨𝑠, 1⟩))
101 df-ov 6552 . . . . . . . . . . 11 (𝑠𝐾1) = (𝐾‘⟨𝑠, 1⟩)
10298, 100, 1013eqtr4g 2669 . . . . . . . . . 10 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘(𝑠𝐴1)) = (𝑠𝐾1))
10340simprd 478 . . . . . . . . . 10 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝐾1) = (𝐻𝑠))
104102, 103eqtrd 2644 . . . . . . . . 9 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘(𝑠𝐴1)) = (𝐻𝑠))
105104mpteq2dva 4672 . . . . . . . 8 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (𝐹‘(𝑠𝐴1))) = (𝑠 ∈ (0[,]1) ↦ (𝐻𝑠)))
106 fovrn 6702 . . . . . . . . . . 11 ((𝐴:((0[,]1) × (0[,]1))⟶𝐵𝑠 ∈ (0[,]1) ∧ 1 ∈ (0[,]1)) → (𝑠𝐴1) ∈ 𝐵)
10792, 106mp3an3 1405 . . . . . . . . . 10 ((𝐴:((0[,]1) × (0[,]1))⟶𝐵𝑠 ∈ (0[,]1)) → (𝑠𝐴1) ∈ 𝐵)
10822, 107sylan 487 . . . . . . . . 9 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝐴1) ∈ 𝐵)
109 eqidd 2611 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)) = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)))
110 fveq2 6103 . . . . . . . . 9 (𝑥 = (𝑠𝐴1) → (𝐹𝑥) = (𝐹‘(𝑠𝐴1)))
111108, 109, 53, 110fmptco 6303 . . . . . . . 8 (𝜑 → (𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1))) = (𝑠 ∈ (0[,]1) ↦ (𝐹‘(𝑠𝐴1))))
11219, 50cnf 20860 . . . . . . . . . 10 (𝐻 ∈ (II Cn 𝐽) → 𝐻:(0[,]1)⟶ 𝐽)
11310, 112syl 17 . . . . . . . . 9 (𝜑𝐻:(0[,]1)⟶ 𝐽)
114113feqmptd 6159 . . . . . . . 8 (𝜑𝐻 = (𝑠 ∈ (0[,]1) ↦ (𝐻𝑠)))
115105, 111, 1143eqtr4d 2654 . . . . . . 7 (𝜑 → (𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1))) = 𝐻)
116 iicon 22498 . . . . . . . . . . . . 13 II ∈ Con
117116a1i 11 . . . . . . . . . . . 12 (𝜑 → II ∈ Con)
118 iinllycon 30490 . . . . . . . . . . . . 13 II ∈ 𝑛-Locally Con
119118a1i 11 . . . . . . . . . . . 12 (𝜑 → II ∈ 𝑛-Locally Con)
12037, 63, 61, 17cnmpt12f 21279 . . . . . . . . . . . 12 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (0𝐴𝑠)) ∈ (II Cn 𝐶))
121 cvmtop1 30496 . . . . . . . . . . . . . . 15 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top)
1223, 121syl 17 . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ Top)
1231toptopon 20548 . . . . . . . . . . . . . 14 (𝐶 ∈ Top ↔ 𝐶 ∈ (TopOn‘𝐵))
124122, 123sylib 207 . . . . . . . . . . . . 13 (𝜑𝐶 ∈ (TopOn‘𝐵))
125 ffvelrn 6265 . . . . . . . . . . . . . 14 ((𝑀:(0[,]1)⟶𝐵 ∧ 0 ∈ (0[,]1)) → (𝑀‘0) ∈ 𝐵)
12683, 23, 125sylancl 693 . . . . . . . . . . . . 13 (𝜑 → (𝑀‘0) ∈ 𝐵)
127 cnconst2 20897 . . . . . . . . . . . . 13 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝐶 ∈ (TopOn‘𝐵) ∧ (𝑀‘0) ∈ 𝐵) → ((0[,]1) × {(𝑀‘0)}) ∈ (II Cn 𝐶))
12837, 124, 126, 127syl3anc 1318 . . . . . . . . . . . 12 (𝜑 → ((0[,]1) × {(𝑀‘0)}) ∈ (II Cn 𝐶))
1294, 10, 11phtpyi 22591 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠 ∈ (0[,]1)) → ((0𝐾𝑠) = (𝐺‘0) ∧ (1𝐾𝑠) = (𝐺‘1)))
130129simpld 474 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ (0[,]1)) → (0𝐾𝑠) = (𝐺‘0))
131 opelxpi 5072 . . . . . . . . . . . . . . . . . . . 20 ((0 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → ⟨0, 𝑠⟩ ∈ ((0[,]1) × (0[,]1)))
13223, 131mpan 702 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ (0[,]1) → ⟨0, 𝑠⟩ ∈ ((0[,]1) × (0[,]1)))
133 fvco3 6185 . . . . . . . . . . . . . . . . . . 19 ((𝐴:((0[,]1) × (0[,]1))⟶𝐵 ∧ ⟨0, 𝑠⟩ ∈ ((0[,]1) × (0[,]1))) → ((𝐹𝐴)‘⟨0, 𝑠⟩) = (𝐹‘(𝐴‘⟨0, 𝑠⟩)))
13422, 132, 133syl2an 493 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹𝐴)‘⟨0, 𝑠⟩) = (𝐹‘(𝐴‘⟨0, 𝑠⟩)))
13529fveq1d 6105 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹𝐴)‘⟨0, 𝑠⟩) = (𝐾‘⟨0, 𝑠⟩))
136134, 135eqtr3d 2646 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘(𝐴‘⟨0, 𝑠⟩)) = (𝐾‘⟨0, 𝑠⟩))
137 df-ov 6552 . . . . . . . . . . . . . . . . . 18 (0𝐴𝑠) = (𝐴‘⟨0, 𝑠⟩)
138137fveq2i 6106 . . . . . . . . . . . . . . . . 17 (𝐹‘(0𝐴𝑠)) = (𝐹‘(𝐴‘⟨0, 𝑠⟩))
139 df-ov 6552 . . . . . . . . . . . . . . . . 17 (0𝐾𝑠) = (𝐾‘⟨0, 𝑠⟩)
140136, 138, 1393eqtr4g 2669 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘(0𝐴𝑠)) = (0𝐾𝑠))
1417simp3d 1068 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑀‘0) = 𝑃)
142141adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑠 ∈ (0[,]1)) → (𝑀‘0) = 𝑃)
143142fveq2d 6107 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘(𝑀‘0)) = (𝐹𝑃))
1446adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹𝑃) = (𝐺‘0))
145143, 144eqtrd 2644 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘(𝑀‘0)) = (𝐺‘0))
146130, 140, 1453eqtr4d 2654 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘(0𝐴𝑠)) = (𝐹‘(𝑀‘0)))
147146mpteq2dva 4672 . . . . . . . . . . . . . 14 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (𝐹‘(0𝐴𝑠))) = (𝑠 ∈ (0[,]1) ↦ (𝐹‘(𝑀‘0))))
148 fconstmpt 5085 . . . . . . . . . . . . . 14 ((0[,]1) × {(𝐹‘(𝑀‘0))}) = (𝑠 ∈ (0[,]1) ↦ (𝐹‘(𝑀‘0)))
149147, 148syl6eqr 2662 . . . . . . . . . . . . 13 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (𝐹‘(0𝐴𝑠))) = ((0[,]1) × {(𝐹‘(𝑀‘0))}))
150 fovrn 6702 . . . . . . . . . . . . . . . 16 ((𝐴:((0[,]1) × (0[,]1))⟶𝐵 ∧ 0 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → (0𝐴𝑠) ∈ 𝐵)
15123, 150mp3an2 1404 . . . . . . . . . . . . . . 15 ((𝐴:((0[,]1) × (0[,]1))⟶𝐵𝑠 ∈ (0[,]1)) → (0𝐴𝑠) ∈ 𝐵)
15222, 151sylan 487 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (0[,]1)) → (0𝐴𝑠) ∈ 𝐵)
153 eqidd 2611 . . . . . . . . . . . . . 14 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (0𝐴𝑠)) = (𝑠 ∈ (0[,]1) ↦ (0𝐴𝑠)))
154 fveq2 6103 . . . . . . . . . . . . . 14 (𝑥 = (0𝐴𝑠) → (𝐹𝑥) = (𝐹‘(0𝐴𝑠)))
155152, 153, 53, 154fmptco 6303 . . . . . . . . . . . . 13 (𝜑 → (𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (0𝐴𝑠))) = (𝑠 ∈ (0[,]1) ↦ (𝐹‘(0𝐴𝑠))))
156 ffn 5958 . . . . . . . . . . . . . . 15 (𝐹:𝐵 𝐽𝐹 Fn 𝐵)
15752, 156syl 17 . . . . . . . . . . . . . 14 (𝜑𝐹 Fn 𝐵)
158 fcoconst 6307 . . . . . . . . . . . . . 14 ((𝐹 Fn 𝐵 ∧ (𝑀‘0) ∈ 𝐵) → (𝐹 ∘ ((0[,]1) × {(𝑀‘0)})) = ((0[,]1) × {(𝐹‘(𝑀‘0))}))
159157, 126, 158syl2anc 691 . . . . . . . . . . . . 13 (𝜑 → (𝐹 ∘ ((0[,]1) × {(𝑀‘0)})) = ((0[,]1) × {(𝐹‘(𝑀‘0))}))
160149, 155, 1593eqtr4d 2654 . . . . . . . . . . . 12 (𝜑 → (𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (0𝐴𝑠))) = (𝐹 ∘ ((0[,]1) × {(𝑀‘0)})))
16160, 141eqtr4d 2647 . . . . . . . . . . . . 13 (𝜑 → (0𝐴0) = (𝑀‘0))
162 oveq2 6557 . . . . . . . . . . . . . . 15 (𝑠 = 0 → (0𝐴𝑠) = (0𝐴0))
163 eqid 2610 . . . . . . . . . . . . . . 15 (𝑠 ∈ (0[,]1) ↦ (0𝐴𝑠)) = (𝑠 ∈ (0[,]1) ↦ (0𝐴𝑠))
164162, 163, 72fvmpt 6191 . . . . . . . . . . . . . 14 (0 ∈ (0[,]1) → ((𝑠 ∈ (0[,]1) ↦ (0𝐴𝑠))‘0) = (0𝐴0))
16523, 164ax-mp 5 . . . . . . . . . . . . 13 ((𝑠 ∈ (0[,]1) ↦ (0𝐴𝑠))‘0) = (0𝐴0)
166 fvex 6113 . . . . . . . . . . . . . . 15 (𝑀‘0) ∈ V
167166fvconst2 6374 . . . . . . . . . . . . . 14 (0 ∈ (0[,]1) → (((0[,]1) × {(𝑀‘0)})‘0) = (𝑀‘0))
16823, 167ax-mp 5 . . . . . . . . . . . . 13 (((0[,]1) × {(𝑀‘0)})‘0) = (𝑀‘0)
169161, 165, 1683eqtr4g 2669 . . . . . . . . . . . 12 (𝜑 → ((𝑠 ∈ (0[,]1) ↦ (0𝐴𝑠))‘0) = (((0[,]1) × {(𝑀‘0)})‘0))
1701, 19, 3, 117, 119, 62, 120, 128, 160, 169cvmliftmoi 30519 . . . . . . . . . . 11 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (0𝐴𝑠)) = ((0[,]1) × {(𝑀‘0)}))
171 fconstmpt 5085 . . . . . . . . . . 11 ((0[,]1) × {(𝑀‘0)}) = (𝑠 ∈ (0[,]1) ↦ (𝑀‘0))
172170, 171syl6eq 2660 . . . . . . . . . 10 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (0𝐴𝑠)) = (𝑠 ∈ (0[,]1) ↦ (𝑀‘0)))
173 mpteqb 6207 . . . . . . . . . . 11 (∀𝑠 ∈ (0[,]1)(0𝐴𝑠) ∈ V → ((𝑠 ∈ (0[,]1) ↦ (0𝐴𝑠)) = (𝑠 ∈ (0[,]1) ↦ (𝑀‘0)) ↔ ∀𝑠 ∈ (0[,]1)(0𝐴𝑠) = (𝑀‘0)))
174 ovex 6577 . . . . . . . . . . . 12 (0𝐴𝑠) ∈ V
175174a1i 11 . . . . . . . . . . 11 (𝑠 ∈ (0[,]1) → (0𝐴𝑠) ∈ V)
176173, 175mprg 2910 . . . . . . . . . 10 ((𝑠 ∈ (0[,]1) ↦ (0𝐴𝑠)) = (𝑠 ∈ (0[,]1) ↦ (𝑀‘0)) ↔ ∀𝑠 ∈ (0[,]1)(0𝐴𝑠) = (𝑀‘0))
177172, 176sylib 207 . . . . . . . . 9 (𝜑 → ∀𝑠 ∈ (0[,]1)(0𝐴𝑠) = (𝑀‘0))
178 oveq2 6557 . . . . . . . . . . 11 (𝑠 = 1 → (0𝐴𝑠) = (0𝐴1))
179178eqeq1d 2612 . . . . . . . . . 10 (𝑠 = 1 → ((0𝐴𝑠) = (𝑀‘0) ↔ (0𝐴1) = (𝑀‘0)))
180179rspcv 3278 . . . . . . . . 9 (1 ∈ (0[,]1) → (∀𝑠 ∈ (0[,]1)(0𝐴𝑠) = (𝑀‘0) → (0𝐴1) = (𝑀‘0)))
18192, 177, 180mpsyl 66 . . . . . . . 8 (𝜑 → (0𝐴1) = (𝑀‘0))
182181, 141eqtrd 2644 . . . . . . 7 (𝜑 → (0𝐴1) = 𝑃)
18392a1i 11 . . . . . . . . . 10 (𝜑 → 1 ∈ (0[,]1))
18437, 37, 183cnmptc 21275 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (0[,]1) ↦ 1) ∈ (II Cn II))
18537, 61, 184, 17cnmpt12f 21279 . . . . . . . 8 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)) ∈ (II Cn 𝐶))
1861cvmlift 30535 . . . . . . . . 9 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐻 ∈ (II Cn 𝐽)) ∧ (𝑃𝐵 ∧ (𝐹𝑃) = (𝐻‘0))) → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃))
1873, 10, 5, 14, 186syl22anc 1319 . . . . . . . 8 (𝜑 → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃))
188 coeq2 5202 . . . . . . . . . . 11 (𝑓 = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)) → (𝐹𝑓) = (𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1))))
189188eqeq1d 2612 . . . . . . . . . 10 (𝑓 = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)) → ((𝐹𝑓) = 𝐻 ↔ (𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1))) = 𝐻))
190 fveq1 6102 . . . . . . . . . . . 12 (𝑓 = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)) → (𝑓‘0) = ((𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1))‘0))
191 oveq1 6556 . . . . . . . . . . . . . 14 (𝑠 = 0 → (𝑠𝐴1) = (0𝐴1))
192 eqid 2610 . . . . . . . . . . . . . 14 (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)) = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1))
193 ovex 6577 . . . . . . . . . . . . . 14 (0𝐴1) ∈ V
194191, 192, 193fvmpt 6191 . . . . . . . . . . . . 13 (0 ∈ (0[,]1) → ((𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1))‘0) = (0𝐴1))
19523, 194ax-mp 5 . . . . . . . . . . . 12 ((𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1))‘0) = (0𝐴1)
196190, 195syl6eq 2660 . . . . . . . . . . 11 (𝑓 = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)) → (𝑓‘0) = (0𝐴1))
197196eqeq1d 2612 . . . . . . . . . 10 (𝑓 = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)) → ((𝑓‘0) = 𝑃 ↔ (0𝐴1) = 𝑃))
198189, 197anbi12d 743 . . . . . . . . 9 (𝑓 = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)) → (((𝐹𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃) ↔ ((𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1))) = 𝐻 ∧ (0𝐴1) = 𝑃)))
199198riota2 6533 . . . . . . . 8 (((𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)) ∈ (II Cn 𝐶) ∧ ∃!𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃)) → (((𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1))) = 𝐻 ∧ (0𝐴1) = 𝑃) ↔ (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃)) = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1))))
200185, 187, 199syl2anc 691 . . . . . . 7 (𝜑 → (((𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1))) = 𝐻 ∧ (0𝐴1) = 𝑃) ↔ (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃)) = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1))))
201115, 182, 200mpbi2and 958 . . . . . 6 (𝜑 → (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃)) = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)))
2029, 201syl5eq 2656 . . . . 5 (𝜑𝑁 = (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)))
20319, 1cnf 20860 . . . . . . 7 (𝑁 ∈ (II Cn 𝐶) → 𝑁:(0[,]1)⟶𝐵)
20416, 203syl 17 . . . . . 6 (𝜑𝑁:(0[,]1)⟶𝐵)
205204feqmptd 6159 . . . . 5 (𝜑𝑁 = (𝑠 ∈ (0[,]1) ↦ (𝑁𝑠)))
206202, 205eqtr3d 2646 . . . 4 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)) = (𝑠 ∈ (0[,]1) ↦ (𝑁𝑠)))
207 mpteqb 6207 . . . . 5 (∀𝑠 ∈ (0[,]1)(𝑠𝐴1) ∈ V → ((𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)) = (𝑠 ∈ (0[,]1) ↦ (𝑁𝑠)) ↔ ∀𝑠 ∈ (0[,]1)(𝑠𝐴1) = (𝑁𝑠)))
208 ovex 6577 . . . . . 6 (𝑠𝐴1) ∈ V
209208a1i 11 . . . . 5 (𝑠 ∈ (0[,]1) → (𝑠𝐴1) ∈ V)
210207, 209mprg 2910 . . . 4 ((𝑠 ∈ (0[,]1) ↦ (𝑠𝐴1)) = (𝑠 ∈ (0[,]1) ↦ (𝑁𝑠)) ↔ ∀𝑠 ∈ (0[,]1)(𝑠𝐴1) = (𝑁𝑠))
211206, 210sylib 207 . . 3 (𝜑 → ∀𝑠 ∈ (0[,]1)(𝑠𝐴1) = (𝑁𝑠))
212211r19.21bi 2916 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝐴1) = (𝑁𝑠))
213177r19.21bi 2916 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (0𝐴𝑠) = (𝑀‘0))
21437, 184, 61, 17cnmpt12f 21279 . . . . . 6 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (1𝐴𝑠)) ∈ (II Cn 𝐶))
215 ffvelrn 6265 . . . . . . . 8 ((𝑀:(0[,]1)⟶𝐵 ∧ 1 ∈ (0[,]1)) → (𝑀‘1) ∈ 𝐵)
21683, 92, 215sylancl 693 . . . . . . 7 (𝜑 → (𝑀‘1) ∈ 𝐵)
217 cnconst2 20897 . . . . . . 7 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝐶 ∈ (TopOn‘𝐵) ∧ (𝑀‘1) ∈ 𝐵) → ((0[,]1) × {(𝑀‘1)}) ∈ (II Cn 𝐶))
21837, 124, 216, 217syl3anc 1318 . . . . . 6 (𝜑 → ((0[,]1) × {(𝑀‘1)}) ∈ (II Cn 𝐶))
219 opelxpi 5072 . . . . . . . . . . . . . 14 ((1 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → ⟨1, 𝑠⟩ ∈ ((0[,]1) × (0[,]1)))
22092, 219mpan 702 . . . . . . . . . . . . 13 (𝑠 ∈ (0[,]1) → ⟨1, 𝑠⟩ ∈ ((0[,]1) × (0[,]1)))
221 fvco3 6185 . . . . . . . . . . . . 13 ((𝐴:((0[,]1) × (0[,]1))⟶𝐵 ∧ ⟨1, 𝑠⟩ ∈ ((0[,]1) × (0[,]1))) → ((𝐹𝐴)‘⟨1, 𝑠⟩) = (𝐹‘(𝐴‘⟨1, 𝑠⟩)))
22222, 220, 221syl2an 493 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹𝐴)‘⟨1, 𝑠⟩) = (𝐹‘(𝐴‘⟨1, 𝑠⟩)))
22329fveq1d 6105 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹𝐴)‘⟨1, 𝑠⟩) = (𝐾‘⟨1, 𝑠⟩))
224222, 223eqtr3d 2646 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘(𝐴‘⟨1, 𝑠⟩)) = (𝐾‘⟨1, 𝑠⟩))
225 df-ov 6552 . . . . . . . . . . . 12 (1𝐴𝑠) = (𝐴‘⟨1, 𝑠⟩)
226225fveq2i 6106 . . . . . . . . . . 11 (𝐹‘(1𝐴𝑠)) = (𝐹‘(𝐴‘⟨1, 𝑠⟩))
227 df-ov 6552 . . . . . . . . . . 11 (1𝐾𝑠) = (𝐾‘⟨1, 𝑠⟩)
228224, 226, 2273eqtr4g 2669 . . . . . . . . . 10 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘(1𝐴𝑠)) = (1𝐾𝑠))
229129simprd 478 . . . . . . . . . 10 ((𝜑𝑠 ∈ (0[,]1)) → (1𝐾𝑠) = (𝐺‘1))
2307simp2d 1067 . . . . . . . . . . . . 13 (𝜑 → (𝐹𝑀) = 𝐺)
231230adantr 480 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹𝑀) = 𝐺)
232231fveq1d 6105 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹𝑀)‘1) = (𝐺‘1))
23383adantr 480 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (0[,]1)) → 𝑀:(0[,]1)⟶𝐵)
234 fvco3 6185 . . . . . . . . . . . 12 ((𝑀:(0[,]1)⟶𝐵 ∧ 1 ∈ (0[,]1)) → ((𝐹𝑀)‘1) = (𝐹‘(𝑀‘1)))
235233, 92, 234sylancl 693 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹𝑀)‘1) = (𝐹‘(𝑀‘1)))
236232, 235eqtr3d 2646 . . . . . . . . . 10 ((𝜑𝑠 ∈ (0[,]1)) → (𝐺‘1) = (𝐹‘(𝑀‘1)))
237228, 229, 2363eqtrd 2648 . . . . . . . . 9 ((𝜑𝑠 ∈ (0[,]1)) → (𝐹‘(1𝐴𝑠)) = (𝐹‘(𝑀‘1)))
238237mpteq2dva 4672 . . . . . . . 8 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (𝐹‘(1𝐴𝑠))) = (𝑠 ∈ (0[,]1) ↦ (𝐹‘(𝑀‘1))))
239 fconstmpt 5085 . . . . . . . 8 ((0[,]1) × {(𝐹‘(𝑀‘1))}) = (𝑠 ∈ (0[,]1) ↦ (𝐹‘(𝑀‘1)))
240238, 239syl6eqr 2662 . . . . . . 7 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (𝐹‘(1𝐴𝑠))) = ((0[,]1) × {(𝐹‘(𝑀‘1))}))
241 fovrn 6702 . . . . . . . . . 10 ((𝐴:((0[,]1) × (0[,]1))⟶𝐵 ∧ 1 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → (1𝐴𝑠) ∈ 𝐵)
24292, 241mp3an2 1404 . . . . . . . . 9 ((𝐴:((0[,]1) × (0[,]1))⟶𝐵𝑠 ∈ (0[,]1)) → (1𝐴𝑠) ∈ 𝐵)
24322, 242sylan 487 . . . . . . . 8 ((𝜑𝑠 ∈ (0[,]1)) → (1𝐴𝑠) ∈ 𝐵)
244 eqidd 2611 . . . . . . . 8 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (1𝐴𝑠)) = (𝑠 ∈ (0[,]1) ↦ (1𝐴𝑠)))
245 fveq2 6103 . . . . . . . 8 (𝑥 = (1𝐴𝑠) → (𝐹𝑥) = (𝐹‘(1𝐴𝑠)))
246243, 244, 53, 245fmptco 6303 . . . . . . 7 (𝜑 → (𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (1𝐴𝑠))) = (𝑠 ∈ (0[,]1) ↦ (𝐹‘(1𝐴𝑠))))
247 fcoconst 6307 . . . . . . . 8 ((𝐹 Fn 𝐵 ∧ (𝑀‘1) ∈ 𝐵) → (𝐹 ∘ ((0[,]1) × {(𝑀‘1)})) = ((0[,]1) × {(𝐹‘(𝑀‘1))}))
248157, 216, 247syl2anc 691 . . . . . . 7 (𝜑 → (𝐹 ∘ ((0[,]1) × {(𝑀‘1)})) = ((0[,]1) × {(𝐹‘(𝑀‘1))}))
249240, 246, 2483eqtr4d 2654 . . . . . 6 (𝜑 → (𝐹 ∘ (𝑠 ∈ (0[,]1) ↦ (1𝐴𝑠))) = (𝐹 ∘ ((0[,]1) × {(𝑀‘1)})))
250 oveq1 6556 . . . . . . . . . 10 (𝑠 = 1 → (𝑠𝐴0) = (1𝐴0))
251 fveq2 6103 . . . . . . . . . 10 (𝑠 = 1 → (𝑀𝑠) = (𝑀‘1))
252250, 251eqeq12d 2625 . . . . . . . . 9 (𝑠 = 1 → ((𝑠𝐴0) = (𝑀𝑠) ↔ (1𝐴0) = (𝑀‘1)))
253252rspcv 3278 . . . . . . . 8 (1 ∈ (0[,]1) → (∀𝑠 ∈ (0[,]1)(𝑠𝐴0) = (𝑀𝑠) → (1𝐴0) = (𝑀‘1)))
25492, 90, 253mpsyl 66 . . . . . . 7 (𝜑 → (1𝐴0) = (𝑀‘1))
255 oveq2 6557 . . . . . . . . 9 (𝑠 = 0 → (1𝐴𝑠) = (1𝐴0))
256 eqid 2610 . . . . . . . . 9 (𝑠 ∈ (0[,]1) ↦ (1𝐴𝑠)) = (𝑠 ∈ (0[,]1) ↦ (1𝐴𝑠))
257 ovex 6577 . . . . . . . . 9 (1𝐴0) ∈ V
258255, 256, 257fvmpt 6191 . . . . . . . 8 (0 ∈ (0[,]1) → ((𝑠 ∈ (0[,]1) ↦ (1𝐴𝑠))‘0) = (1𝐴0))
25923, 258ax-mp 5 . . . . . . 7 ((𝑠 ∈ (0[,]1) ↦ (1𝐴𝑠))‘0) = (1𝐴0)
260 fvex 6113 . . . . . . . . 9 (𝑀‘1) ∈ V
261260fvconst2 6374 . . . . . . . 8 (0 ∈ (0[,]1) → (((0[,]1) × {(𝑀‘1)})‘0) = (𝑀‘1))
26223, 261ax-mp 5 . . . . . . 7 (((0[,]1) × {(𝑀‘1)})‘0) = (𝑀‘1)
263254, 259, 2623eqtr4g 2669 . . . . . 6 (𝜑 → ((𝑠 ∈ (0[,]1) ↦ (1𝐴𝑠))‘0) = (((0[,]1) × {(𝑀‘1)})‘0))
2641, 19, 3, 117, 119, 62, 214, 218, 249, 263cvmliftmoi 30519 . . . . 5 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (1𝐴𝑠)) = ((0[,]1) × {(𝑀‘1)}))
265 fconstmpt 5085 . . . . 5 ((0[,]1) × {(𝑀‘1)}) = (𝑠 ∈ (0[,]1) ↦ (𝑀‘1))
266264, 265syl6eq 2660 . . . 4 (𝜑 → (𝑠 ∈ (0[,]1) ↦ (1𝐴𝑠)) = (𝑠 ∈ (0[,]1) ↦ (𝑀‘1)))
267 mpteqb 6207 . . . . 5 (∀𝑠 ∈ (0[,]1)(1𝐴𝑠) ∈ V → ((𝑠 ∈ (0[,]1) ↦ (1𝐴𝑠)) = (𝑠 ∈ (0[,]1) ↦ (𝑀‘1)) ↔ ∀𝑠 ∈ (0[,]1)(1𝐴𝑠) = (𝑀‘1)))
268 ovex 6577 . . . . . 6 (1𝐴𝑠) ∈ V
269268a1i 11 . . . . 5 (𝑠 ∈ (0[,]1) → (1𝐴𝑠) ∈ V)
270267, 269mprg 2910 . . . 4 ((𝑠 ∈ (0[,]1) ↦ (1𝐴𝑠)) = (𝑠 ∈ (0[,]1) ↦ (𝑀‘1)) ↔ ∀𝑠 ∈ (0[,]1)(1𝐴𝑠) = (𝑀‘1))
271266, 270sylib 207 . . 3 (𝜑 → ∀𝑠 ∈ (0[,]1)(1𝐴𝑠) = (𝑀‘1))
272271r19.21bi 2916 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (1𝐴𝑠) = (𝑀‘1))
2738, 16, 17, 91, 212, 213, 272isphtpy2d 22594 1 (𝜑𝐴 ∈ (𝑀(PHtpy‘𝐶)𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  ∃!wreu 2898  Vcvv 3173  {csn 4125  cop 4131   cuni 4372  cmpt 4643   × cxp 5036  ccom 5042   Fn wfn 5799  wf 5800  cfv 5804  crio 6510  (class class class)co 6549  0cc0 9815  1c1 9816  [,]cicc 12049  Topctop 20517  TopOnctopon 20518   Cn ccn 20838  Conccon 21024  𝑛-Locally cnlly 21078   ×t ctx 21173  IIcii 22486   Htpy chtpy 22574  PHtpycphtpy 22575   CovMap ccvm 30491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-ec 7631  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-cn 20841  df-cnp 20842  df-cmp 21000  df-con 21025  df-lly 21079  df-nlly 21080  df-tx 21175  df-hmeo 21368  df-xms 21935  df-ms 21936  df-tms 21937  df-ii 22488  df-htpy 22577  df-phtpy 22578  df-phtpc 22599  df-pcon 30457  df-scon 30458  df-cvm 30492
This theorem is referenced by:  cvmliftpht  30554
  Copyright terms: Public domain W3C validator