Mathbox for Mario Carneiro < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftlem14 Structured version   Visualization version   GIF version

Theorem cvmliftlem14 30533
 Description: Lemma for cvmlift 30535. Putting the results of cvmliftlem11 30531, cvmliftlem13 30532 and cvmliftmo 30520 together, we have that 𝐾 is a continuous function, satisfies 𝐹 ∘ 𝐾 = 𝐺 and 𝐾(0) = 𝑃, and is equal to any other function which also has these properties, so it follows that 𝐾 is the unique lift of 𝐺. (Contributed by Mario Carneiro, 16-Feb-2015.)
Hypotheses
Ref Expression
cvmliftlem.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
cvmliftlem.b 𝐵 = 𝐶
cvmliftlem.x 𝑋 = 𝐽
cvmliftlem.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmliftlem.g (𝜑𝐺 ∈ (II Cn 𝐽))
cvmliftlem.p (𝜑𝑃𝐵)
cvmliftlem.e (𝜑 → (𝐹𝑃) = (𝐺‘0))
cvmliftlem.n (𝜑𝑁 ∈ ℕ)
cvmliftlem.t (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
cvmliftlem.a (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
cvmliftlem.l 𝐿 = (topGen‘ran (,))
cvmliftlem.q 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))
cvmliftlem.k 𝐾 = 𝑘 ∈ (1...𝑁)(𝑄𝑘)
Assertion
Ref Expression
cvmliftlem14 (𝜑 → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃))
Distinct variable groups:   𝑣,𝑏,𝑧,𝐵   𝑓,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑥,𝐹,𝑣,𝑧   𝑧,𝐿   𝑓,𝐾   𝑃,𝑏,𝑓,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧   𝐶,𝑏,𝑓,𝑗,𝑘,𝑠,𝑢,𝑣,𝑧   𝜑,𝑓,𝑗,𝑠,𝑥,𝑧   𝑁,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧   𝑆,𝑏,𝑓,𝑗,𝑘,𝑠,𝑢,𝑣,𝑥,𝑧   𝑗,𝑋   𝐺,𝑏,𝑓,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝑇,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝐽,𝑏,𝑓,𝑗,𝑘,𝑠,𝑢,𝑣,𝑥,𝑧   𝑄,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑣,𝑢,𝑘,𝑚,𝑏)   𝐵(𝑥,𝑢,𝑓,𝑗,𝑘,𝑚,𝑠)   𝐶(𝑥,𝑚)   𝑃(𝑗,𝑠)   𝑄(𝑓,𝑗,𝑠)   𝑆(𝑚)   𝑇(𝑓)   𝐽(𝑚)   𝐾(𝑥,𝑧,𝑣,𝑢,𝑗,𝑘,𝑚,𝑠,𝑏)   𝐿(𝑥,𝑣,𝑢,𝑓,𝑗,𝑘,𝑚,𝑠,𝑏)   𝑁(𝑓,𝑗,𝑠)   𝑋(𝑥,𝑧,𝑣,𝑢,𝑓,𝑘,𝑚,𝑠,𝑏)

Proof of Theorem cvmliftlem14
StepHypRef Expression
1 cvmliftlem.1 . . . . 5 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
2 cvmliftlem.b . . . . 5 𝐵 = 𝐶
3 cvmliftlem.x . . . . 5 𝑋 = 𝐽
4 cvmliftlem.f . . . . 5 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
5 cvmliftlem.g . . . . 5 (𝜑𝐺 ∈ (II Cn 𝐽))
6 cvmliftlem.p . . . . 5 (𝜑𝑃𝐵)
7 cvmliftlem.e . . . . 5 (𝜑 → (𝐹𝑃) = (𝐺‘0))
8 cvmliftlem.n . . . . 5 (𝜑𝑁 ∈ ℕ)
9 cvmliftlem.t . . . . 5 (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
10 cvmliftlem.a . . . . 5 (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
11 cvmliftlem.l . . . . 5 𝐿 = (topGen‘ran (,))
12 cvmliftlem.q . . . . 5 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))
13 cvmliftlem.k . . . . 5 𝐾 = 𝑘 ∈ (1...𝑁)(𝑄𝑘)
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13cvmliftlem11 30531 . . . 4 (𝜑 → (𝐾 ∈ (II Cn 𝐶) ∧ (𝐹𝐾) = 𝐺))
1514simpld 474 . . 3 (𝜑𝐾 ∈ (II Cn 𝐶))
1614simprd 478 . . 3 (𝜑 → (𝐹𝐾) = 𝐺)
171, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13cvmliftlem13 30532 . . 3 (𝜑 → (𝐾‘0) = 𝑃)
18 coeq2 5202 . . . . . 6 (𝑓 = 𝐾 → (𝐹𝑓) = (𝐹𝐾))
1918eqeq1d 2612 . . . . 5 (𝑓 = 𝐾 → ((𝐹𝑓) = 𝐺 ↔ (𝐹𝐾) = 𝐺))
20 fveq1 6102 . . . . . 6 (𝑓 = 𝐾 → (𝑓‘0) = (𝐾‘0))
2120eqeq1d 2612 . . . . 5 (𝑓 = 𝐾 → ((𝑓‘0) = 𝑃 ↔ (𝐾‘0) = 𝑃))
2219, 21anbi12d 743 . . . 4 (𝑓 = 𝐾 → (((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃) ↔ ((𝐹𝐾) = 𝐺 ∧ (𝐾‘0) = 𝑃)))
2322rspcev 3282 . . 3 ((𝐾 ∈ (II Cn 𝐶) ∧ ((𝐹𝐾) = 𝐺 ∧ (𝐾‘0) = 𝑃)) → ∃𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃))
2415, 16, 17, 23syl12anc 1316 . 2 (𝜑 → ∃𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃))
25 iiuni 22492 . . 3 (0[,]1) = II
26 iicon 22498 . . . 4 II ∈ Con
2726a1i 11 . . 3 (𝜑 → II ∈ Con)
28 iinllycon 30490 . . . 4 II ∈ 𝑛-Locally Con
2928a1i 11 . . 3 (𝜑 → II ∈ 𝑛-Locally Con)
30 0elunit 12161 . . . 4 0 ∈ (0[,]1)
3130a1i 11 . . 3 (𝜑 → 0 ∈ (0[,]1))
322, 25, 4, 27, 29, 31, 5, 6, 7cvmliftmo 30520 . 2 (𝜑 → ∃*𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃))
33 reu5 3136 . 2 (∃!𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃) ↔ (∃𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃) ∧ ∃*𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)))
3424, 32, 33sylanbrc 695 1 (𝜑 → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  ∃wrex 2897  ∃!wreu 2898  ∃*wrmo 2899  {crab 2900  Vcvv 3173   ∖ cdif 3537   ∪ cun 3538   ∩ cin 3539   ⊆ wss 3540  ∅c0 3874  𝒫 cpw 4108  {csn 4125  ⟨cop 4131  ∪ cuni 4372  ∪ ciun 4455   ↦ cmpt 4643   I cid 4948   × cxp 5036  ◡ccnv 5037  ran crn 5039   ↾ cres 5040   “ cima 5041   ∘ ccom 5042  ⟶wf 5800  ‘cfv 5804  ℩crio 6510  (class class class)co 6549   ↦ cmpt2 6551  1st c1st 7057  2nd c2nd 7058  0cc0 9815  1c1 9816   − cmin 10145   / cdiv 10563  ℕcn 10897  (,)cioo 12046  [,]cicc 12049  ...cfz 12197  seqcseq 12663   ↾t crest 15904  topGenctg 15921   Cn ccn 20838  Conccon 21024  𝑛-Locally cnlly 21078  Homeochmeo 21366  IIcii 22486   CovMap ccvm 30491 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-nei 20712  df-cn 20841  df-cnp 20842  df-con 21025  df-lly 21079  df-nlly 21080  df-tx 21175  df-hmeo 21368  df-xms 21935  df-ms 21936  df-tms 21937  df-ii 22488  df-htpy 22577  df-phtpy 22578  df-phtpc 22599  df-pcon 30457  df-scon 30458  df-cvm 30492 This theorem is referenced by:  cvmliftlem15  30534
 Copyright terms: Public domain W3C validator