Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift3lem5 Structured version   Visualization version   GIF version

Theorem cvmlift3lem5 30559
Description: Lemma for cvmlift2 30552. (Contributed by Mario Carneiro, 6-Jul-2015.)
Hypotheses
Ref Expression
cvmlift3.b 𝐵 = 𝐶
cvmlift3.y 𝑌 = 𝐾
cvmlift3.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift3.k (𝜑𝐾 ∈ SCon)
cvmlift3.l (𝜑𝐾 ∈ 𝑛-Locally PCon)
cvmlift3.o (𝜑𝑂𝑌)
cvmlift3.g (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
cvmlift3.p (𝜑𝑃𝐵)
cvmlift3.e (𝜑 → (𝐹𝑃) = (𝐺𝑂))
cvmlift3.h 𝐻 = (𝑥𝑌 ↦ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
Assertion
Ref Expression
cvmlift3lem5 (𝜑 → (𝐹𝐻) = 𝐺)
Distinct variable groups:   𝑧,𝑓,𝑔,𝑥   𝑓,𝐽   𝑥,𝑔,𝐽   𝑓,𝐹,𝑔   𝑥,𝑧,𝐹   𝑓,𝐻,𝑔,𝑥,𝑧   𝐵,𝑓,𝑔,𝑥,𝑧   𝑓,𝐺,𝑔,𝑥,𝑧   𝐶,𝑓,𝑔,𝑥,𝑧   𝜑,𝑓,𝑥   𝑓,𝐾,𝑔,𝑥,𝑧   𝑃,𝑓,𝑔,𝑥,𝑧   𝑓,𝑂,𝑔,𝑥,𝑧   𝑓,𝑌,𝑔,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑔)   𝐽(𝑧)

Proof of Theorem cvmlift3lem5
Dummy variables 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . . . 5 (𝐻𝑦) = (𝐻𝑦)
2 cvmlift3.b . . . . . 6 𝐵 = 𝐶
3 cvmlift3.y . . . . . 6 𝑌 = 𝐾
4 cvmlift3.f . . . . . 6 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
5 cvmlift3.k . . . . . 6 (𝜑𝐾 ∈ SCon)
6 cvmlift3.l . . . . . 6 (𝜑𝐾 ∈ 𝑛-Locally PCon)
7 cvmlift3.o . . . . . 6 (𝜑𝑂𝑌)
8 cvmlift3.g . . . . . 6 (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
9 cvmlift3.p . . . . . 6 (𝜑𝑃𝐵)
10 cvmlift3.e . . . . . 6 (𝜑 → (𝐹𝑃) = (𝐺𝑂))
11 cvmlift3.h . . . . . 6 𝐻 = (𝑥𝑌 ↦ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
122, 3, 4, 5, 6, 7, 8, 9, 10, 11cvmlift3lem4 30558 . . . . 5 ((𝜑𝑦𝑌) → ((𝐻𝑦) = (𝐻𝑦) ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑦))))
131, 12mpbii 222 . . . 4 ((𝜑𝑦𝑌) → ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑦)))
14 df-3an 1033 . . . . . 6 (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑦)) ↔ (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦) ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑦)))
15 eqid 2610 . . . . . . . . . . . 12 (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))
164ad3antrrr 762 . . . . . . . . . . . 12 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → 𝐹 ∈ (𝐶 CovMap 𝐽))
17 simplr 788 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → 𝑓 ∈ (II Cn 𝐾))
188ad3antrrr 762 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → 𝐺 ∈ (𝐾 Cn 𝐽))
19 cnco 20880 . . . . . . . . . . . . 13 ((𝑓 ∈ (II Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐽)) → (𝐺𝑓) ∈ (II Cn 𝐽))
2017, 18, 19syl2anc 691 . . . . . . . . . . . 12 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (𝐺𝑓) ∈ (II Cn 𝐽))
219ad3antrrr 762 . . . . . . . . . . . 12 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → 𝑃𝐵)
22 simprl 790 . . . . . . . . . . . . . 14 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (𝑓‘0) = 𝑂)
2322fveq2d 6107 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (𝐺‘(𝑓‘0)) = (𝐺𝑂))
24 iiuni 22492 . . . . . . . . . . . . . . . 16 (0[,]1) = II
2524, 3cnf 20860 . . . . . . . . . . . . . . 15 (𝑓 ∈ (II Cn 𝐾) → 𝑓:(0[,]1)⟶𝑌)
2617, 25syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → 𝑓:(0[,]1)⟶𝑌)
27 0elunit 12161 . . . . . . . . . . . . . 14 0 ∈ (0[,]1)
28 fvco3 6185 . . . . . . . . . . . . . 14 ((𝑓:(0[,]1)⟶𝑌 ∧ 0 ∈ (0[,]1)) → ((𝐺𝑓)‘0) = (𝐺‘(𝑓‘0)))
2926, 27, 28sylancl 693 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → ((𝐺𝑓)‘0) = (𝐺‘(𝑓‘0)))
3010ad3antrrr 762 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (𝐹𝑃) = (𝐺𝑂))
3123, 29, 303eqtr4rd 2655 . . . . . . . . . . . 12 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (𝐹𝑃) = ((𝐺𝑓)‘0))
322, 15, 16, 20, 21, 31cvmliftiota 30537 . . . . . . . . . . 11 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)) ∈ (II Cn 𝐶) ∧ (𝐹 ∘ (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))) = (𝐺𝑓) ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘0) = 𝑃))
3332simp2d 1067 . . . . . . . . . 10 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (𝐹 ∘ (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))) = (𝐺𝑓))
3433fveq1d 6105 . . . . . . . . 9 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → ((𝐹 ∘ (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)))‘1) = ((𝐺𝑓)‘1))
3532simp1d 1066 . . . . . . . . . . 11 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)) ∈ (II Cn 𝐶))
3624, 2cnf 20860 . . . . . . . . . . 11 ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)) ∈ (II Cn 𝐶) → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)):(0[,]1)⟶𝐵)
3735, 36syl 17 . . . . . . . . . 10 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)):(0[,]1)⟶𝐵)
38 1elunit 12162 . . . . . . . . . 10 1 ∈ (0[,]1)
39 fvco3 6185 . . . . . . . . . 10 (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)):(0[,]1)⟶𝐵 ∧ 1 ∈ (0[,]1)) → ((𝐹 ∘ (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)))‘1) = (𝐹‘((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1)))
4037, 38, 39sylancl 693 . . . . . . . . 9 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → ((𝐹 ∘ (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)))‘1) = (𝐹‘((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1)))
41 fvco3 6185 . . . . . . . . . . 11 ((𝑓:(0[,]1)⟶𝑌 ∧ 1 ∈ (0[,]1)) → ((𝐺𝑓)‘1) = (𝐺‘(𝑓‘1)))
4226, 38, 41sylancl 693 . . . . . . . . . 10 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → ((𝐺𝑓)‘1) = (𝐺‘(𝑓‘1)))
43 simprr 792 . . . . . . . . . . 11 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (𝑓‘1) = 𝑦)
4443fveq2d 6107 . . . . . . . . . 10 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (𝐺‘(𝑓‘1)) = (𝐺𝑦))
4542, 44eqtrd 2644 . . . . . . . . 9 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → ((𝐺𝑓)‘1) = (𝐺𝑦))
4634, 40, 453eqtr3d 2652 . . . . . . . 8 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (𝐹‘((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1)) = (𝐺𝑦))
47 fveq2 6103 . . . . . . . . 9 (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑦) → (𝐹‘((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1)) = (𝐹‘(𝐻𝑦)))
4847eqeq1d 2612 . . . . . . . 8 (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑦) → ((𝐹‘((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1)) = (𝐺𝑦) ↔ (𝐹‘(𝐻𝑦)) = (𝐺𝑦)))
4946, 48syl5ibcom 234 . . . . . . 7 ((((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) ∧ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦)) → (((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑦) → (𝐹‘(𝐻𝑦)) = (𝐺𝑦)))
5049expimpd 627 . . . . . 6 (((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) → ((((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦) ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑦)) → (𝐹‘(𝐻𝑦)) = (𝐺𝑦)))
5114, 50syl5bi 231 . . . . 5 (((𝜑𝑦𝑌) ∧ 𝑓 ∈ (II Cn 𝐾)) → (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑦)) → (𝐹‘(𝐻𝑦)) = (𝐺𝑦)))
5251rexlimdva 3013 . . . 4 ((𝜑𝑦𝑌) → (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑦 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = (𝐻𝑦)) → (𝐹‘(𝐻𝑦)) = (𝐺𝑦)))
5313, 52mpd 15 . . 3 ((𝜑𝑦𝑌) → (𝐹‘(𝐻𝑦)) = (𝐺𝑦))
5453mpteq2dva 4672 . 2 (𝜑 → (𝑦𝑌 ↦ (𝐹‘(𝐻𝑦))) = (𝑦𝑌 ↦ (𝐺𝑦)))
552, 3, 4, 5, 6, 7, 8, 9, 10, 11cvmlift3lem3 30557 . . . 4 (𝜑𝐻:𝑌𝐵)
5655ffvelrnda 6267 . . 3 ((𝜑𝑦𝑌) → (𝐻𝑦) ∈ 𝐵)
5755feqmptd 6159 . . 3 (𝜑𝐻 = (𝑦𝑌 ↦ (𝐻𝑦)))
58 cvmcn 30498 . . . . 5 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽))
59 eqid 2610 . . . . . 6 𝐽 = 𝐽
602, 59cnf 20860 . . . . 5 (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵 𝐽)
614, 58, 603syl 18 . . . 4 (𝜑𝐹:𝐵 𝐽)
6261feqmptd 6159 . . 3 (𝜑𝐹 = (𝑤𝐵 ↦ (𝐹𝑤)))
63 fveq2 6103 . . 3 (𝑤 = (𝐻𝑦) → (𝐹𝑤) = (𝐹‘(𝐻𝑦)))
6456, 57, 62, 63fmptco 6303 . 2 (𝜑 → (𝐹𝐻) = (𝑦𝑌 ↦ (𝐹‘(𝐻𝑦))))
653, 59cnf 20860 . . . 4 (𝐺 ∈ (𝐾 Cn 𝐽) → 𝐺:𝑌 𝐽)
668, 65syl 17 . . 3 (𝜑𝐺:𝑌 𝐽)
6766feqmptd 6159 . 2 (𝜑𝐺 = (𝑦𝑌 ↦ (𝐺𝑦)))
6854, 64, 673eqtr4d 2654 1 (𝜑 → (𝐹𝐻) = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wrex 2897   cuni 4372  cmpt 4643  ccom 5042  wf 5800  cfv 5804  crio 6510  (class class class)co 6549  0cc0 9815  1c1 9816  [,]cicc 12049   Cn ccn 20838  𝑛-Locally cnlly 21078  IIcii 22486  PConcpcon 30455  SConcscon 30456   CovMap ccvm 30491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-ec 7631  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-cn 20841  df-cnp 20842  df-cmp 21000  df-con 21025  df-lly 21079  df-nlly 21080  df-tx 21175  df-hmeo 21368  df-xms 21935  df-ms 21936  df-tms 21937  df-ii 22488  df-htpy 22577  df-phtpy 22578  df-phtpc 22599  df-pco 22613  df-pcon 30457  df-scon 30458  df-cvm 30492
This theorem is referenced by:  cvmlift3lem6  30560  cvmlift3lem7  30561  cvmlift3lem9  30563
  Copyright terms: Public domain W3C validator