Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvlexch1 Structured version   Visualization version   GIF version

Theorem cvlexch1 33633
Description: An atomic covering lattice has the exchange property. (Contributed by NM, 6-Nov-2011.)
Hypotheses
Ref Expression
cvlexch.b 𝐵 = (Base‘𝐾)
cvlexch.l = (le‘𝐾)
cvlexch.j = (join‘𝐾)
cvlexch.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cvlexch1 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (𝑃 (𝑋 𝑄) → 𝑄 (𝑋 𝑃)))

Proof of Theorem cvlexch1
Dummy variables 𝑞 𝑝 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvlexch.b . . . . . 6 𝐵 = (Base‘𝐾)
2 cvlexch.l . . . . . 6 = (le‘𝐾)
3 cvlexch.j . . . . . 6 = (join‘𝐾)
4 cvlexch.a . . . . . 6 𝐴 = (Atoms‘𝐾)
51, 2, 3, 4iscvlat 33628 . . . . 5 (𝐾 ∈ CvLat ↔ (𝐾 ∈ AtLat ∧ ∀𝑝𝐴𝑞𝐴𝑥𝐵 ((¬ 𝑝 𝑥𝑝 (𝑥 𝑞)) → 𝑞 (𝑥 𝑝))))
65simprbi 479 . . . 4 (𝐾 ∈ CvLat → ∀𝑝𝐴𝑞𝐴𝑥𝐵 ((¬ 𝑝 𝑥𝑝 (𝑥 𝑞)) → 𝑞 (𝑥 𝑝)))
7 breq1 4586 . . . . . . . 8 (𝑝 = 𝑃 → (𝑝 𝑥𝑃 𝑥))
87notbid 307 . . . . . . 7 (𝑝 = 𝑃 → (¬ 𝑝 𝑥 ↔ ¬ 𝑃 𝑥))
9 breq1 4586 . . . . . . 7 (𝑝 = 𝑃 → (𝑝 (𝑥 𝑞) ↔ 𝑃 (𝑥 𝑞)))
108, 9anbi12d 743 . . . . . 6 (𝑝 = 𝑃 → ((¬ 𝑝 𝑥𝑝 (𝑥 𝑞)) ↔ (¬ 𝑃 𝑥𝑃 (𝑥 𝑞))))
11 oveq2 6557 . . . . . . 7 (𝑝 = 𝑃 → (𝑥 𝑝) = (𝑥 𝑃))
1211breq2d 4595 . . . . . 6 (𝑝 = 𝑃 → (𝑞 (𝑥 𝑝) ↔ 𝑞 (𝑥 𝑃)))
1310, 12imbi12d 333 . . . . 5 (𝑝 = 𝑃 → (((¬ 𝑝 𝑥𝑝 (𝑥 𝑞)) → 𝑞 (𝑥 𝑝)) ↔ ((¬ 𝑃 𝑥𝑃 (𝑥 𝑞)) → 𝑞 (𝑥 𝑃))))
14 oveq2 6557 . . . . . . . 8 (𝑞 = 𝑄 → (𝑥 𝑞) = (𝑥 𝑄))
1514breq2d 4595 . . . . . . 7 (𝑞 = 𝑄 → (𝑃 (𝑥 𝑞) ↔ 𝑃 (𝑥 𝑄)))
1615anbi2d 736 . . . . . 6 (𝑞 = 𝑄 → ((¬ 𝑃 𝑥𝑃 (𝑥 𝑞)) ↔ (¬ 𝑃 𝑥𝑃 (𝑥 𝑄))))
17 breq1 4586 . . . . . 6 (𝑞 = 𝑄 → (𝑞 (𝑥 𝑃) ↔ 𝑄 (𝑥 𝑃)))
1816, 17imbi12d 333 . . . . 5 (𝑞 = 𝑄 → (((¬ 𝑃 𝑥𝑃 (𝑥 𝑞)) → 𝑞 (𝑥 𝑃)) ↔ ((¬ 𝑃 𝑥𝑃 (𝑥 𝑄)) → 𝑄 (𝑥 𝑃))))
19 breq2 4587 . . . . . . . 8 (𝑥 = 𝑋 → (𝑃 𝑥𝑃 𝑋))
2019notbid 307 . . . . . . 7 (𝑥 = 𝑋 → (¬ 𝑃 𝑥 ↔ ¬ 𝑃 𝑋))
21 oveq1 6556 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥 𝑄) = (𝑋 𝑄))
2221breq2d 4595 . . . . . . 7 (𝑥 = 𝑋 → (𝑃 (𝑥 𝑄) ↔ 𝑃 (𝑋 𝑄)))
2320, 22anbi12d 743 . . . . . 6 (𝑥 = 𝑋 → ((¬ 𝑃 𝑥𝑃 (𝑥 𝑄)) ↔ (¬ 𝑃 𝑋𝑃 (𝑋 𝑄))))
24 oveq1 6556 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 𝑃) = (𝑋 𝑃))
2524breq2d 4595 . . . . . 6 (𝑥 = 𝑋 → (𝑄 (𝑥 𝑃) ↔ 𝑄 (𝑋 𝑃)))
2623, 25imbi12d 333 . . . . 5 (𝑥 = 𝑋 → (((¬ 𝑃 𝑥𝑃 (𝑥 𝑄)) → 𝑄 (𝑥 𝑃)) ↔ ((¬ 𝑃 𝑋𝑃 (𝑋 𝑄)) → 𝑄 (𝑋 𝑃))))
2713, 18, 26rspc3v 3296 . . . 4 ((𝑃𝐴𝑄𝐴𝑋𝐵) → (∀𝑝𝐴𝑞𝐴𝑥𝐵 ((¬ 𝑝 𝑥𝑝 (𝑥 𝑞)) → 𝑞 (𝑥 𝑝)) → ((¬ 𝑃 𝑋𝑃 (𝑋 𝑄)) → 𝑄 (𝑋 𝑃))))
286, 27mpan9 485 . . 3 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵)) → ((¬ 𝑃 𝑋𝑃 (𝑋 𝑄)) → 𝑄 (𝑋 𝑃)))
2928exp4b 630 . 2 (𝐾 ∈ CvLat → ((𝑃𝐴𝑄𝐴𝑋𝐵) → (¬ 𝑃 𝑋 → (𝑃 (𝑋 𝑄) → 𝑄 (𝑋 𝑃)))))
30293imp 1249 1 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (𝑃 (𝑋 𝑄) → 𝑄 (𝑋 𝑃)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896   class class class wbr 4583  cfv 5804  (class class class)co 6549  Basecbs 15695  lecple 15775  joincjn 16767  Atomscatm 33568  AtLatcal 33569  CvLatclc 33570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-iota 5768  df-fv 5812  df-ov 6552  df-cvlat 33627
This theorem is referenced by:  cvlexch2  33634  cvlexchb1  33635  cvlexch3  33637  cvlcvr1  33644  hlexch1  33686
  Copyright terms: Public domain W3C validator