Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  cvbr Structured version   Visualization version   GIF version

Theorem cvbr 28525
 Description: Binary relation expressing 𝐵 covers 𝐴, which means that 𝐵 is larger than 𝐴 and there is nothing in between. Definition 3.2.18 of [PtakPulmannova] p. 68. (Contributed by NM, 4-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
cvbr ((𝐴C𝐵C ) → (𝐴 𝐵 ↔ (𝐴𝐵 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem cvbr
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2676 . . . . 5 (𝑦 = 𝐴 → (𝑦C𝐴C ))
21anbi1d 737 . . . 4 (𝑦 = 𝐴 → ((𝑦C𝑧C ) ↔ (𝐴C𝑧C )))
3 psseq1 3656 . . . . 5 (𝑦 = 𝐴 → (𝑦𝑧𝐴𝑧))
4 psseq1 3656 . . . . . . . 8 (𝑦 = 𝐴 → (𝑦𝑥𝐴𝑥))
54anbi1d 737 . . . . . . 7 (𝑦 = 𝐴 → ((𝑦𝑥𝑥𝑧) ↔ (𝐴𝑥𝑥𝑧)))
65rexbidv 3034 . . . . . 6 (𝑦 = 𝐴 → (∃𝑥C (𝑦𝑥𝑥𝑧) ↔ ∃𝑥C (𝐴𝑥𝑥𝑧)))
76notbid 307 . . . . 5 (𝑦 = 𝐴 → (¬ ∃𝑥C (𝑦𝑥𝑥𝑧) ↔ ¬ ∃𝑥C (𝐴𝑥𝑥𝑧)))
83, 7anbi12d 743 . . . 4 (𝑦 = 𝐴 → ((𝑦𝑧 ∧ ¬ ∃𝑥C (𝑦𝑥𝑥𝑧)) ↔ (𝐴𝑧 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝑧))))
92, 8anbi12d 743 . . 3 (𝑦 = 𝐴 → (((𝑦C𝑧C ) ∧ (𝑦𝑧 ∧ ¬ ∃𝑥C (𝑦𝑥𝑥𝑧))) ↔ ((𝐴C𝑧C ) ∧ (𝐴𝑧 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝑧)))))
10 eleq1 2676 . . . . 5 (𝑧 = 𝐵 → (𝑧C𝐵C ))
1110anbi2d 736 . . . 4 (𝑧 = 𝐵 → ((𝐴C𝑧C ) ↔ (𝐴C𝐵C )))
12 psseq2 3657 . . . . 5 (𝑧 = 𝐵 → (𝐴𝑧𝐴𝐵))
13 psseq2 3657 . . . . . . . 8 (𝑧 = 𝐵 → (𝑥𝑧𝑥𝐵))
1413anbi2d 736 . . . . . . 7 (𝑧 = 𝐵 → ((𝐴𝑥𝑥𝑧) ↔ (𝐴𝑥𝑥𝐵)))
1514rexbidv 3034 . . . . . 6 (𝑧 = 𝐵 → (∃𝑥C (𝐴𝑥𝑥𝑧) ↔ ∃𝑥C (𝐴𝑥𝑥𝐵)))
1615notbid 307 . . . . 5 (𝑧 = 𝐵 → (¬ ∃𝑥C (𝐴𝑥𝑥𝑧) ↔ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵)))
1712, 16anbi12d 743 . . . 4 (𝑧 = 𝐵 → ((𝐴𝑧 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝑧)) ↔ (𝐴𝐵 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵))))
1811, 17anbi12d 743 . . 3 (𝑧 = 𝐵 → (((𝐴C𝑧C ) ∧ (𝐴𝑧 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝑧))) ↔ ((𝐴C𝐵C ) ∧ (𝐴𝐵 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵)))))
19 df-cv 28522 . . 3 = {⟨𝑦, 𝑧⟩ ∣ ((𝑦C𝑧C ) ∧ (𝑦𝑧 ∧ ¬ ∃𝑥C (𝑦𝑥𝑥𝑧)))}
209, 18, 19brabg 4919 . 2 ((𝐴C𝐵C ) → (𝐴 𝐵 ↔ ((𝐴C𝐵C ) ∧ (𝐴𝐵 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵)))))
2120bianabs 920 1 ((𝐴C𝐵C ) → (𝐴 𝐵 ↔ (𝐴𝐵 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∃wrex 2897   ⊊ wpss 3541   class class class wbr 4583   Cℋ cch 27170   ⋖ℋ ccv 27205 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-cv 28522 This theorem is referenced by:  cvbr2  28526  cvcon3  28527  cvpss  28528  cvnbtwn  28529
 Copyright terms: Public domain W3C validator