Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cusgrfilem3 Structured version   Visualization version   GIF version

Theorem cusgrfilem3 40673
Description: Lemma 3 for cusgrfi 40674. (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 11-Nov-2020.)
Hypotheses
Ref Expression
cusgrfi.v 𝑉 = (Vtx‘𝐺)
cusgrfi.p 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉 (𝑎𝑁𝑥 = {𝑎, 𝑁})}
cusgrfi.f 𝐹 = (𝑥 ∈ (𝑉 ∖ {𝑁}) ↦ {𝑥, 𝑁})
Assertion
Ref Expression
cusgrfilem3 (𝑁𝑉 → (𝑉 ∈ Fin ↔ 𝑃 ∈ Fin))
Distinct variable groups:   𝑥,𝐺   𝑁,𝑎,𝑥   𝑉,𝑎,𝑥   𝑥,𝑃
Allowed substitution hints:   𝑃(𝑎)   𝐹(𝑥,𝑎)   𝐺(𝑎)

Proof of Theorem cusgrfilem3
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 diffi 8077 . . 3 (𝑉 ∈ Fin → (𝑉 ∖ {𝑁}) ∈ Fin)
2 simpr 476 . . . . . 6 ((𝑁𝑉 ∧ ¬ 𝑉 ∈ Fin) → ¬ 𝑉 ∈ Fin)
3 snfi 7923 . . . . . 6 {𝑁} ∈ Fin
4 difinf 8115 . . . . . 6 ((¬ 𝑉 ∈ Fin ∧ {𝑁} ∈ Fin) → ¬ (𝑉 ∖ {𝑁}) ∈ Fin)
52, 3, 4sylancl 693 . . . . 5 ((𝑁𝑉 ∧ ¬ 𝑉 ∈ Fin) → ¬ (𝑉 ∖ {𝑁}) ∈ Fin)
65ex 449 . . . 4 (𝑁𝑉 → (¬ 𝑉 ∈ Fin → ¬ (𝑉 ∖ {𝑁}) ∈ Fin))
76con4d 113 . . 3 (𝑁𝑉 → ((𝑉 ∖ {𝑁}) ∈ Fin → 𝑉 ∈ Fin))
81, 7impbid2 215 . 2 (𝑁𝑉 → (𝑉 ∈ Fin ↔ (𝑉 ∖ {𝑁}) ∈ Fin))
9 cusgrfi.f . . . . . 6 𝐹 = (𝑥 ∈ (𝑉 ∖ {𝑁}) ↦ {𝑥, 𝑁})
10 cusgrfi.v . . . . . . . . 9 𝑉 = (Vtx‘𝐺)
11 fvex 6113 . . . . . . . . 9 (Vtx‘𝐺) ∈ V
1210, 11eqeltri 2684 . . . . . . . 8 𝑉 ∈ V
13 difexg 4735 . . . . . . . 8 (𝑉 ∈ V → (𝑉 ∖ {𝑁}) ∈ V)
1412, 13ax-mp 5 . . . . . . 7 (𝑉 ∖ {𝑁}) ∈ V
15 mptexg 6389 . . . . . . 7 ((𝑉 ∖ {𝑁}) ∈ V → (𝑥 ∈ (𝑉 ∖ {𝑁}) ↦ {𝑥, 𝑁}) ∈ V)
1614, 15mp1i 13 . . . . . 6 (𝑁𝑉 → (𝑥 ∈ (𝑉 ∖ {𝑁}) ↦ {𝑥, 𝑁}) ∈ V)
179, 16syl5eqel 2692 . . . . 5 (𝑁𝑉𝐹 ∈ V)
18 cusgrfi.p . . . . . 6 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉 (𝑎𝑁𝑥 = {𝑎, 𝑁})}
1910, 18, 9cusgrfilem2 40672 . . . . 5 (𝑁𝑉𝐹:(𝑉 ∖ {𝑁})–1-1-onto𝑃)
20 f1oeq1 6040 . . . . . 6 (𝑓 = 𝐹 → (𝑓:(𝑉 ∖ {𝑁})–1-1-onto𝑃𝐹:(𝑉 ∖ {𝑁})–1-1-onto𝑃))
2120spcegv 3267 . . . . 5 (𝐹 ∈ V → (𝐹:(𝑉 ∖ {𝑁})–1-1-onto𝑃 → ∃𝑓 𝑓:(𝑉 ∖ {𝑁})–1-1-onto𝑃))
2217, 19, 21sylc 63 . . . 4 (𝑁𝑉 → ∃𝑓 𝑓:(𝑉 ∖ {𝑁})–1-1-onto𝑃)
23 bren 7850 . . . 4 ((𝑉 ∖ {𝑁}) ≈ 𝑃 ↔ ∃𝑓 𝑓:(𝑉 ∖ {𝑁})–1-1-onto𝑃)
2422, 23sylibr 223 . . 3 (𝑁𝑉 → (𝑉 ∖ {𝑁}) ≈ 𝑃)
25 enfi 8061 . . 3 ((𝑉 ∖ {𝑁}) ≈ 𝑃 → ((𝑉 ∖ {𝑁}) ∈ Fin ↔ 𝑃 ∈ Fin))
2624, 25syl 17 . 2 (𝑁𝑉 → ((𝑉 ∖ {𝑁}) ∈ Fin ↔ 𝑃 ∈ Fin))
278, 26bitrd 267 1 (𝑁𝑉 → (𝑉 ∈ Fin ↔ 𝑃 ∈ Fin))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wex 1695  wcel 1977  wne 2780  wrex 2897  {crab 2900  Vcvv 3173  cdif 3537  𝒫 cpw 4108  {csn 4125  {cpr 4127   class class class wbr 4583  cmpt 4643  1-1-ontowf1o 5803  cfv 5804  cen 7838  Fincfn 7841  Vtxcvtx 25673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-fin 7845
This theorem is referenced by:  cusgrfi  40674
  Copyright terms: Public domain W3C validator