Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cusgrfi Structured version   Visualization version   GIF version

Theorem cusgrfi 40674
 Description: If the size of a complete simple graph is finite, then its order is also finite. (Contributed by Alexander van der Vekens, 13-Jan-2018.) (Revised by AV, 11-Nov-2020.)
Hypotheses
Ref Expression
cusgrfi.v 𝑉 = (Vtx‘𝐺)
cusgrfi.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
cusgrfi ((𝐺 ∈ ComplUSGraph ∧ 𝐸 ∈ Fin) → 𝑉 ∈ Fin)

Proof of Theorem cusgrfi
Dummy variables 𝑛 𝑝 𝑒 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfielex 8074 . . . . 5 𝑉 ∈ Fin → ∃𝑛 𝑛𝑉)
2 cusgrfi.v . . . . . . . . 9 𝑉 = (Vtx‘𝐺)
3 eqeq1 2614 . . . . . . . . . . . 12 (𝑒 = 𝑝 → (𝑒 = {𝑣, 𝑛} ↔ 𝑝 = {𝑣, 𝑛}))
43anbi2d 736 . . . . . . . . . . 11 (𝑒 = 𝑝 → ((𝑣𝑛𝑒 = {𝑣, 𝑛}) ↔ (𝑣𝑛𝑝 = {𝑣, 𝑛})))
54rexbidv 3034 . . . . . . . . . 10 (𝑒 = 𝑝 → (∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛}) ↔ ∃𝑣𝑉 (𝑣𝑛𝑝 = {𝑣, 𝑛})))
65cbvrabv 3172 . . . . . . . . 9 {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} = {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑝 = {𝑣, 𝑛})}
7 eqid 2610 . . . . . . . . 9 (𝑝 ∈ (𝑉 ∖ {𝑛}) ↦ {𝑝, 𝑛}) = (𝑝 ∈ (𝑉 ∖ {𝑛}) ↦ {𝑝, 𝑛})
82, 6, 7cusgrfilem3 40673 . . . . . . . 8 (𝑛𝑉 → (𝑉 ∈ Fin ↔ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ∈ Fin))
98notbid 307 . . . . . . 7 (𝑛𝑉 → (¬ 𝑉 ∈ Fin ↔ ¬ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ∈ Fin))
109biimpac 502 . . . . . 6 ((¬ 𝑉 ∈ Fin ∧ 𝑛𝑉) → ¬ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ∈ Fin)
112, 6cusgrfilem1 40671 . . . . . . . . . 10 ((𝐺 ∈ ComplUSGraph ∧ 𝑛𝑉) → {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ⊆ (Edg‘𝐺))
12 cusgrfi.e . . . . . . . . . . . . 13 𝐸 = (Edg‘𝐺)
1312eleq1i 2679 . . . . . . . . . . . 12 (𝐸 ∈ Fin ↔ (Edg‘𝐺) ∈ Fin)
14 ssfi 8065 . . . . . . . . . . . . 13 (((Edg‘𝐺) ∈ Fin ∧ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ⊆ (Edg‘𝐺)) → {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ∈ Fin)
1514expcom 450 . . . . . . . . . . . 12 ({𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ⊆ (Edg‘𝐺) → ((Edg‘𝐺) ∈ Fin → {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ∈ Fin))
1613, 15syl5bi 231 . . . . . . . . . . 11 ({𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ⊆ (Edg‘𝐺) → (𝐸 ∈ Fin → {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ∈ Fin))
1716con3d 147 . . . . . . . . . 10 ({𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ⊆ (Edg‘𝐺) → (¬ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ∈ Fin → ¬ 𝐸 ∈ Fin))
1811, 17syl 17 . . . . . . . . 9 ((𝐺 ∈ ComplUSGraph ∧ 𝑛𝑉) → (¬ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ∈ Fin → ¬ 𝐸 ∈ Fin))
1918expcom 450 . . . . . . . 8 (𝑛𝑉 → (𝐺 ∈ ComplUSGraph → (¬ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ∈ Fin → ¬ 𝐸 ∈ Fin)))
2019com23 84 . . . . . . 7 (𝑛𝑉 → (¬ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ∈ Fin → (𝐺 ∈ ComplUSGraph → ¬ 𝐸 ∈ Fin)))
2120adantl 481 . . . . . 6 ((¬ 𝑉 ∈ Fin ∧ 𝑛𝑉) → (¬ {𝑒 ∈ 𝒫 𝑉 ∣ ∃𝑣𝑉 (𝑣𝑛𝑒 = {𝑣, 𝑛})} ∈ Fin → (𝐺 ∈ ComplUSGraph → ¬ 𝐸 ∈ Fin)))
2210, 21mpd 15 . . . . 5 ((¬ 𝑉 ∈ Fin ∧ 𝑛𝑉) → (𝐺 ∈ ComplUSGraph → ¬ 𝐸 ∈ Fin))
231, 22exlimddv 1850 . . . 4 𝑉 ∈ Fin → (𝐺 ∈ ComplUSGraph → ¬ 𝐸 ∈ Fin))
2423com12 32 . . 3 (𝐺 ∈ ComplUSGraph → (¬ 𝑉 ∈ Fin → ¬ 𝐸 ∈ Fin))
2524con4d 113 . 2 (𝐺 ∈ ComplUSGraph → (𝐸 ∈ Fin → 𝑉 ∈ Fin))
2625imp 444 1 ((𝐺 ∈ ComplUSGraph ∧ 𝐸 ∈ Fin) → 𝑉 ∈ Fin)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∃wrex 2897  {crab 2900   ∖ cdif 3537   ⊆ wss 3540  𝒫 cpw 4108  {csn 4125  {cpr 4127   ↦ cmpt 4643  ‘cfv 5804  Fincfn 7841  Vtxcvtx 25673  Edgcedga 25792  ComplUSGraphccusgr 40553 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-hash 12980  df-upgr 25749  df-umgr 25750  df-edga 25793  df-usgr 40381  df-nbgr 40554  df-uvtxa 40556  df-cplgr 40557  df-cusgr 40558 This theorem is referenced by:  sizusglecusglem2  40678
 Copyright terms: Public domain W3C validator