![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cusgrasizeindslem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for cusgrasizeinds 26004. (Contributed by Alexander van der Vekens, 11-Jan-2018.) |
Ref | Expression |
---|---|
cusgrares.f | ⊢ 𝐹 = (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑥)}) |
Ref | Expression |
---|---|
cusgrasizeindslem2 | ⊢ ((𝑉 ComplUSGrph 𝐸 ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (#‘{𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑥)}) = ((#‘𝑉) − 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nbcusgra 25992 | . . . 4 ⊢ ((𝑉 ComplUSGrph 𝐸 ∧ 𝑁 ∈ 𝑉) → (〈𝑉, 𝐸〉 Neighbors 𝑁) = (𝑉 ∖ {𝑁})) | |
2 | 1 | 3adant2 1073 | . . 3 ⊢ ((𝑉 ComplUSGrph 𝐸 ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (〈𝑉, 𝐸〉 Neighbors 𝑁) = (𝑉 ∖ {𝑁})) |
3 | 2 | fveq2d 6107 | . 2 ⊢ ((𝑉 ComplUSGrph 𝐸 ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (#‘(〈𝑉, 𝐸〉 Neighbors 𝑁)) = (#‘(𝑉 ∖ {𝑁}))) |
4 | cusisusgra 25987 | . . . . . 6 ⊢ (𝑉 ComplUSGrph 𝐸 → 𝑉 USGrph 𝐸) | |
5 | 4 | anim1i 590 | . . . . 5 ⊢ ((𝑉 ComplUSGrph 𝐸 ∧ 𝑁 ∈ 𝑉) → (𝑉 USGrph 𝐸 ∧ 𝑁 ∈ 𝑉)) |
6 | 5 | 3adant2 1073 | . . . 4 ⊢ ((𝑉 ComplUSGrph 𝐸 ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (𝑉 USGrph 𝐸 ∧ 𝑁 ∈ 𝑉)) |
7 | nbgraf1o 25976 | . . . 4 ⊢ ((𝑉 USGrph 𝐸 ∧ 𝑁 ∈ 𝑉) → ∃𝑓 𝑓:(〈𝑉, 𝐸〉 Neighbors 𝑁)–1-1-onto→{𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑥)}) | |
8 | 6, 7 | syl 17 | . . 3 ⊢ ((𝑉 ComplUSGrph 𝐸 ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → ∃𝑓 𝑓:(〈𝑉, 𝐸〉 Neighbors 𝑁)–1-1-onto→{𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑥)}) |
9 | nbusgra 25957 | . . . . . . . 8 ⊢ (𝑉 USGrph 𝐸 → (〈𝑉, 𝐸〉 Neighbors 𝑁) = {𝑛 ∈ 𝑉 ∣ {𝑁, 𝑛} ∈ ran 𝐸}) | |
10 | 4, 9 | syl 17 | . . . . . . 7 ⊢ (𝑉 ComplUSGrph 𝐸 → (〈𝑉, 𝐸〉 Neighbors 𝑁) = {𝑛 ∈ 𝑉 ∣ {𝑁, 𝑛} ∈ ran 𝐸}) |
11 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝑉 ComplUSGrph 𝐸 ∧ 𝑉 ∈ Fin) → (〈𝑉, 𝐸〉 Neighbors 𝑁) = {𝑛 ∈ 𝑉 ∣ {𝑁, 𝑛} ∈ ran 𝐸}) |
12 | rabfi 8070 | . . . . . . 7 ⊢ (𝑉 ∈ Fin → {𝑛 ∈ 𝑉 ∣ {𝑁, 𝑛} ∈ ran 𝐸} ∈ Fin) | |
13 | 12 | adantl 481 | . . . . . 6 ⊢ ((𝑉 ComplUSGrph 𝐸 ∧ 𝑉 ∈ Fin) → {𝑛 ∈ 𝑉 ∣ {𝑁, 𝑛} ∈ ran 𝐸} ∈ Fin) |
14 | 11, 13 | eqeltrd 2688 | . . . . 5 ⊢ ((𝑉 ComplUSGrph 𝐸 ∧ 𝑉 ∈ Fin) → (〈𝑉, 𝐸〉 Neighbors 𝑁) ∈ Fin) |
15 | 14 | 3adant3 1074 | . . . 4 ⊢ ((𝑉 ComplUSGrph 𝐸 ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (〈𝑉, 𝐸〉 Neighbors 𝑁) ∈ Fin) |
16 | usgrafis 25944 | . . . . . . 7 ⊢ ((𝑉 USGrph 𝐸 ∧ 𝑉 ∈ Fin) → 𝐸 ∈ Fin) | |
17 | 4, 16 | sylan 487 | . . . . . 6 ⊢ ((𝑉 ComplUSGrph 𝐸 ∧ 𝑉 ∈ Fin) → 𝐸 ∈ Fin) |
18 | dmfi 8129 | . . . . . . 7 ⊢ (𝐸 ∈ Fin → dom 𝐸 ∈ Fin) | |
19 | rabfi 8070 | . . . . . . 7 ⊢ (dom 𝐸 ∈ Fin → {𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑥)} ∈ Fin) | |
20 | 18, 19 | syl 17 | . . . . . 6 ⊢ (𝐸 ∈ Fin → {𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑥)} ∈ Fin) |
21 | 17, 20 | syl 17 | . . . . 5 ⊢ ((𝑉 ComplUSGrph 𝐸 ∧ 𝑉 ∈ Fin) → {𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑥)} ∈ Fin) |
22 | 21 | 3adant3 1074 | . . . 4 ⊢ ((𝑉 ComplUSGrph 𝐸 ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → {𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑥)} ∈ Fin) |
23 | hasheqf1o 12999 | . . . 4 ⊢ (((〈𝑉, 𝐸〉 Neighbors 𝑁) ∈ Fin ∧ {𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑥)} ∈ Fin) → ((#‘(〈𝑉, 𝐸〉 Neighbors 𝑁)) = (#‘{𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑥)}) ↔ ∃𝑓 𝑓:(〈𝑉, 𝐸〉 Neighbors 𝑁)–1-1-onto→{𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑥)})) | |
24 | 15, 22, 23 | syl2anc 691 | . . 3 ⊢ ((𝑉 ComplUSGrph 𝐸 ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → ((#‘(〈𝑉, 𝐸〉 Neighbors 𝑁)) = (#‘{𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑥)}) ↔ ∃𝑓 𝑓:(〈𝑉, 𝐸〉 Neighbors 𝑁)–1-1-onto→{𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑥)})) |
25 | 8, 24 | mpbird 246 | . 2 ⊢ ((𝑉 ComplUSGrph 𝐸 ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (#‘(〈𝑉, 𝐸〉 Neighbors 𝑁)) = (#‘{𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑥)})) |
26 | hashdifsn 13063 | . . 3 ⊢ ((𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (#‘(𝑉 ∖ {𝑁})) = ((#‘𝑉) − 1)) | |
27 | 26 | 3adant1 1072 | . 2 ⊢ ((𝑉 ComplUSGrph 𝐸 ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (#‘(𝑉 ∖ {𝑁})) = ((#‘𝑉) − 1)) |
28 | 3, 25, 27 | 3eqtr3d 2652 | 1 ⊢ ((𝑉 ComplUSGrph 𝐸 ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (#‘{𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑥)}) = ((#‘𝑉) − 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∃wex 1695 ∈ wcel 1977 ∉ wnel 2781 {crab 2900 ∖ cdif 3537 {csn 4125 {cpr 4127 〈cop 4131 class class class wbr 4583 dom cdm 5038 ran crn 5039 ↾ cres 5040 –1-1-onto→wf1o 5803 ‘cfv 5804 (class class class)co 6549 Fincfn 7841 1c1 9816 − cmin 10145 #chash 12979 USGrph cusg 25859 Neighbors cnbgra 25946 ComplUSGrph ccusgra 25947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-2o 7448 df-oadd 7451 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-card 8648 df-cda 8873 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-2 10956 df-n0 11170 df-xnn0 11241 df-z 11255 df-uz 11564 df-fz 12198 df-hash 12980 df-usgra 25862 df-nbgra 25949 df-cusgra 25950 |
This theorem is referenced by: cusgrasizeinds 26004 |
Copyright terms: Public domain | W3C validator |