Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cusgrafilem3 | Structured version Visualization version GIF version |
Description: Lemma 3 for cusgrafi 26010. (Contributed by Alexander van der Vekens, 13-Jan-2018.) |
Ref | Expression |
---|---|
cusgrafi.p | ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})} |
cusgrafi.f | ⊢ 𝐹 = (𝑥 ∈ (𝑉 ∖ {𝑁}) ↦ {𝑥, 𝑁}) |
Ref | Expression |
---|---|
cusgrafilem3 | ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉) → (¬ 𝑉 ∈ Fin → ¬ 𝑃 ∈ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | diffi 8077 | . . . . 5 ⊢ (𝑉 ∈ Fin → (𝑉 ∖ {𝑁}) ∈ Fin) | |
2 | simpr 476 | . . . . . . . 8 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉) ∧ ¬ 𝑉 ∈ Fin) → ¬ 𝑉 ∈ Fin) | |
3 | snfi 7923 | . . . . . . . 8 ⊢ {𝑁} ∈ Fin | |
4 | difinf 8115 | . . . . . . . 8 ⊢ ((¬ 𝑉 ∈ Fin ∧ {𝑁} ∈ Fin) → ¬ (𝑉 ∖ {𝑁}) ∈ Fin) | |
5 | 2, 3, 4 | sylancl 693 | . . . . . . 7 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉) ∧ ¬ 𝑉 ∈ Fin) → ¬ (𝑉 ∖ {𝑁}) ∈ Fin) |
6 | 5 | ex 449 | . . . . . 6 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉) → (¬ 𝑉 ∈ Fin → ¬ (𝑉 ∖ {𝑁}) ∈ Fin)) |
7 | 6 | con4d 113 | . . . . 5 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉) → ((𝑉 ∖ {𝑁}) ∈ Fin → 𝑉 ∈ Fin)) |
8 | 1, 7 | impbid2 215 | . . . 4 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉) → (𝑉 ∈ Fin ↔ (𝑉 ∖ {𝑁}) ∈ Fin)) |
9 | cusgrafi.f | . . . . . . . . 9 ⊢ 𝐹 = (𝑥 ∈ (𝑉 ∖ {𝑁}) ↦ {𝑥, 𝑁}) | |
10 | difexg 4735 | . . . . . . . . . 10 ⊢ (𝑉 ∈ 𝑊 → (𝑉 ∖ {𝑁}) ∈ V) | |
11 | mptexg 6389 | . . . . . . . . . 10 ⊢ ((𝑉 ∖ {𝑁}) ∈ V → (𝑥 ∈ (𝑉 ∖ {𝑁}) ↦ {𝑥, 𝑁}) ∈ V) | |
12 | 10, 11 | syl 17 | . . . . . . . . 9 ⊢ (𝑉 ∈ 𝑊 → (𝑥 ∈ (𝑉 ∖ {𝑁}) ↦ {𝑥, 𝑁}) ∈ V) |
13 | 9, 12 | syl5eqel 2692 | . . . . . . . 8 ⊢ (𝑉 ∈ 𝑊 → 𝐹 ∈ V) |
14 | 13 | adantr 480 | . . . . . . 7 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉) → 𝐹 ∈ V) |
15 | cusgrafi.p | . . . . . . . 8 ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})} | |
16 | 15, 9 | cusgrafilem2 26008 | . . . . . . 7 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉) → 𝐹:(𝑉 ∖ {𝑁})–1-1-onto→𝑃) |
17 | f1oeq1 6040 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (𝑓:(𝑉 ∖ {𝑁})–1-1-onto→𝑃 ↔ 𝐹:(𝑉 ∖ {𝑁})–1-1-onto→𝑃)) | |
18 | 17 | spcegv 3267 | . . . . . . 7 ⊢ (𝐹 ∈ V → (𝐹:(𝑉 ∖ {𝑁})–1-1-onto→𝑃 → ∃𝑓 𝑓:(𝑉 ∖ {𝑁})–1-1-onto→𝑃)) |
19 | 14, 16, 18 | sylc 63 | . . . . . 6 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉) → ∃𝑓 𝑓:(𝑉 ∖ {𝑁})–1-1-onto→𝑃) |
20 | bren 7850 | . . . . . 6 ⊢ ((𝑉 ∖ {𝑁}) ≈ 𝑃 ↔ ∃𝑓 𝑓:(𝑉 ∖ {𝑁})–1-1-onto→𝑃) | |
21 | 19, 20 | sylibr 223 | . . . . 5 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉) → (𝑉 ∖ {𝑁}) ≈ 𝑃) |
22 | enfi 8061 | . . . . 5 ⊢ ((𝑉 ∖ {𝑁}) ≈ 𝑃 → ((𝑉 ∖ {𝑁}) ∈ Fin ↔ 𝑃 ∈ Fin)) | |
23 | 21, 22 | syl 17 | . . . 4 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉) → ((𝑉 ∖ {𝑁}) ∈ Fin ↔ 𝑃 ∈ Fin)) |
24 | 8, 23 | bitrd 267 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉) → (𝑉 ∈ Fin ↔ 𝑃 ∈ Fin)) |
25 | 24 | notbid 307 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉) → (¬ 𝑉 ∈ Fin ↔ ¬ 𝑃 ∈ Fin)) |
26 | 25 | biimpd 218 | 1 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉) → (¬ 𝑉 ∈ Fin → ¬ 𝑃 ∈ Fin)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∃wex 1695 ∈ wcel 1977 ≠ wne 2780 ∃wrex 2897 {crab 2900 Vcvv 3173 ∖ cdif 3537 𝒫 cpw 4108 {csn 4125 {cpr 4127 class class class wbr 4583 ↦ cmpt 4643 –1-1-onto→wf1o 5803 ≈ cen 7838 Fincfn 7841 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-er 7629 df-en 7842 df-fin 7845 |
This theorem is referenced by: cusgrafi 26010 |
Copyright terms: Public domain | W3C validator |