Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cusgrafilem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for cusgrafi 26010. (Contributed by Alexander van der Vekens, 13-Jan-2018.) |
Ref | Expression |
---|---|
cusgrafi.p | ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})} |
Ref | Expression |
---|---|
cusgrafilem1 | ⊢ ((𝑉 ComplUSGrph 𝐸 ∧ 𝑁 ∈ 𝑉) → 𝑃 ⊆ ran 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cusgrarn 25988 | . . 3 ⊢ (𝑉 ComplUSGrph 𝐸 → ran 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2}) | |
2 | fveq2 6103 | . . . . . . . . . 10 ⊢ (𝑥 = {𝑎, 𝑁} → (#‘𝑥) = (#‘{𝑎, 𝑁})) | |
3 | 2 | adantl 481 | . . . . . . . . 9 ⊢ ((𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁}) → (#‘𝑥) = (#‘{𝑎, 𝑁})) |
4 | 3 | adantl 481 | . . . . . . . 8 ⊢ ((𝑎 ∈ 𝑉 ∧ (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})) → (#‘𝑥) = (#‘{𝑎, 𝑁})) |
5 | 4 | adantl 481 | . . . . . . 7 ⊢ (((𝑁 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝑉) ∧ (𝑎 ∈ 𝑉 ∧ (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁}))) → (#‘𝑥) = (#‘{𝑎, 𝑁})) |
6 | simprrl 800 | . . . . . . . 8 ⊢ (((𝑁 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝑉) ∧ (𝑎 ∈ 𝑉 ∧ (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁}))) → 𝑎 ≠ 𝑁) | |
7 | elex 3185 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ 𝑉 → 𝑁 ∈ V) | |
8 | vex 3176 | . . . . . . . . . . 11 ⊢ 𝑎 ∈ V | |
9 | 7, 8 | jctil 558 | . . . . . . . . . 10 ⊢ (𝑁 ∈ 𝑉 → (𝑎 ∈ V ∧ 𝑁 ∈ V)) |
10 | 9 | ad2antrr 758 | . . . . . . . . 9 ⊢ (((𝑁 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝑉) ∧ (𝑎 ∈ 𝑉 ∧ (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁}))) → (𝑎 ∈ V ∧ 𝑁 ∈ V)) |
11 | hashprgOLD 13044 | . . . . . . . . 9 ⊢ ((𝑎 ∈ V ∧ 𝑁 ∈ V) → (𝑎 ≠ 𝑁 ↔ (#‘{𝑎, 𝑁}) = 2)) | |
12 | 10, 11 | syl 17 | . . . . . . . 8 ⊢ (((𝑁 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝑉) ∧ (𝑎 ∈ 𝑉 ∧ (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁}))) → (𝑎 ≠ 𝑁 ↔ (#‘{𝑎, 𝑁}) = 2)) |
13 | 6, 12 | mpbid 221 | . . . . . . 7 ⊢ (((𝑁 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝑉) ∧ (𝑎 ∈ 𝑉 ∧ (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁}))) → (#‘{𝑎, 𝑁}) = 2) |
14 | 5, 13 | eqtrd 2644 | . . . . . 6 ⊢ (((𝑁 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝑉) ∧ (𝑎 ∈ 𝑉 ∧ (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁}))) → (#‘𝑥) = 2) |
15 | 14 | rexlimdvaa 3014 | . . . . 5 ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝑉) → (∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁}) → (#‘𝑥) = 2)) |
16 | 15 | ss2rabdv 3646 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})} ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2}) |
17 | cusgrafi.p | . . . . . 6 ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})} | |
18 | 17 | a1i 11 | . . . . 5 ⊢ (ran 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2} → 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})}) |
19 | id 22 | . . . . 5 ⊢ (ran 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2} → ran 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2}) | |
20 | 18, 19 | sseq12d 3597 | . . . 4 ⊢ (ran 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2} → (𝑃 ⊆ ran 𝐸 ↔ {𝑥 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 (𝑎 ≠ 𝑁 ∧ 𝑥 = {𝑎, 𝑁})} ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2})) |
21 | 16, 20 | syl5ibr 235 | . . 3 ⊢ (ran 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2} → (𝑁 ∈ 𝑉 → 𝑃 ⊆ ran 𝐸)) |
22 | 1, 21 | syl 17 | . 2 ⊢ (𝑉 ComplUSGrph 𝐸 → (𝑁 ∈ 𝑉 → 𝑃 ⊆ ran 𝐸)) |
23 | 22 | imp 444 | 1 ⊢ ((𝑉 ComplUSGrph 𝐸 ∧ 𝑁 ∈ 𝑉) → 𝑃 ⊆ ran 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ≠ wne 2780 ∃wrex 2897 {crab 2900 Vcvv 3173 ⊆ wss 3540 𝒫 cpw 4108 {cpr 4127 class class class wbr 4583 ran crn 5039 ‘cfv 5804 2c2 10947 #chash 12979 ComplUSGrph ccusgra 25947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-2o 7448 df-oadd 7451 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-card 8648 df-cda 8873 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-2 10956 df-n0 11170 df-z 11255 df-uz 11564 df-fz 12198 df-hash 12980 df-usgra 25862 df-cusgra 25950 |
This theorem is referenced by: cusgrafi 26010 |
Copyright terms: Public domain | W3C validator |