Step | Hyp | Ref
| Expression |
1 | | usgrav 25867 |
. . . . 5
⊢ ({𝐴, 𝐵} USGrph 𝐸 → ({𝐴, 𝐵} ∈ V ∧ 𝐸 ∈ V)) |
2 | 1 | adantr 480 |
. . . 4
⊢ (({𝐴, 𝐵} USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵)) → ({𝐴, 𝐵} ∈ V ∧ 𝐸 ∈ V)) |
3 | | iscusgra 25985 |
. . . 4
⊢ (({𝐴, 𝐵} ∈ V ∧ 𝐸 ∈ V) → ({𝐴, 𝐵} ComplUSGrph 𝐸 ↔ ({𝐴, 𝐵} USGrph 𝐸 ∧ ∀𝑘 ∈ {𝐴, 𝐵}∀𝑛 ∈ ({𝐴, 𝐵} ∖ {𝑘}){𝑛, 𝑘} ∈ ran 𝐸))) |
4 | 2, 3 | syl 17 |
. . 3
⊢ (({𝐴, 𝐵} USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵)) → ({𝐴, 𝐵} ComplUSGrph 𝐸 ↔ ({𝐴, 𝐵} USGrph 𝐸 ∧ ∀𝑘 ∈ {𝐴, 𝐵}∀𝑛 ∈ ({𝐴, 𝐵} ∖ {𝑘}){𝑛, 𝑘} ∈ ran 𝐸))) |
5 | | 3simpa 1051 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) |
6 | 5 | adantl 481 |
. . . . 5
⊢ (({𝐴, 𝐵} USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵)) → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) |
7 | | sneq 4135 |
. . . . . . . 8
⊢ (𝑘 = 𝐴 → {𝑘} = {𝐴}) |
8 | 7 | difeq2d 3690 |
. . . . . . 7
⊢ (𝑘 = 𝐴 → ({𝐴, 𝐵} ∖ {𝑘}) = ({𝐴, 𝐵} ∖ {𝐴})) |
9 | | preq2 4213 |
. . . . . . . 8
⊢ (𝑘 = 𝐴 → {𝑛, 𝑘} = {𝑛, 𝐴}) |
10 | 9 | eleq1d 2672 |
. . . . . . 7
⊢ (𝑘 = 𝐴 → ({𝑛, 𝑘} ∈ ran 𝐸 ↔ {𝑛, 𝐴} ∈ ran 𝐸)) |
11 | 8, 10 | raleqbidv 3129 |
. . . . . 6
⊢ (𝑘 = 𝐴 → (∀𝑛 ∈ ({𝐴, 𝐵} ∖ {𝑘}){𝑛, 𝑘} ∈ ran 𝐸 ↔ ∀𝑛 ∈ ({𝐴, 𝐵} ∖ {𝐴}){𝑛, 𝐴} ∈ ran 𝐸)) |
12 | | sneq 4135 |
. . . . . . . 8
⊢ (𝑘 = 𝐵 → {𝑘} = {𝐵}) |
13 | 12 | difeq2d 3690 |
. . . . . . 7
⊢ (𝑘 = 𝐵 → ({𝐴, 𝐵} ∖ {𝑘}) = ({𝐴, 𝐵} ∖ {𝐵})) |
14 | | preq2 4213 |
. . . . . . . 8
⊢ (𝑘 = 𝐵 → {𝑛, 𝑘} = {𝑛, 𝐵}) |
15 | 14 | eleq1d 2672 |
. . . . . . 7
⊢ (𝑘 = 𝐵 → ({𝑛, 𝑘} ∈ ran 𝐸 ↔ {𝑛, 𝐵} ∈ ran 𝐸)) |
16 | 13, 15 | raleqbidv 3129 |
. . . . . 6
⊢ (𝑘 = 𝐵 → (∀𝑛 ∈ ({𝐴, 𝐵} ∖ {𝑘}){𝑛, 𝑘} ∈ ran 𝐸 ↔ ∀𝑛 ∈ ({𝐴, 𝐵} ∖ {𝐵}){𝑛, 𝐵} ∈ ran 𝐸)) |
17 | 11, 16 | ralprg 4181 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∀𝑘 ∈ {𝐴, 𝐵}∀𝑛 ∈ ({𝐴, 𝐵} ∖ {𝑘}){𝑛, 𝑘} ∈ ran 𝐸 ↔ (∀𝑛 ∈ ({𝐴, 𝐵} ∖ {𝐴}){𝑛, 𝐴} ∈ ran 𝐸 ∧ ∀𝑛 ∈ ({𝐴, 𝐵} ∖ {𝐵}){𝑛, 𝐵} ∈ ran 𝐸))) |
18 | 6, 17 | syl 17 |
. . . 4
⊢ (({𝐴, 𝐵} USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵)) → (∀𝑘 ∈ {𝐴, 𝐵}∀𝑛 ∈ ({𝐴, 𝐵} ∖ {𝑘}){𝑛, 𝑘} ∈ ran 𝐸 ↔ (∀𝑛 ∈ ({𝐴, 𝐵} ∖ {𝐴}){𝑛, 𝐴} ∈ ran 𝐸 ∧ ∀𝑛 ∈ ({𝐴, 𝐵} ∖ {𝐵}){𝑛, 𝐵} ∈ ran 𝐸))) |
19 | | ibar 524 |
. . . . 5
⊢ ({𝐴, 𝐵} USGrph 𝐸 → (∀𝑘 ∈ {𝐴, 𝐵}∀𝑛 ∈ ({𝐴, 𝐵} ∖ {𝑘}){𝑛, 𝑘} ∈ ran 𝐸 ↔ ({𝐴, 𝐵} USGrph 𝐸 ∧ ∀𝑘 ∈ {𝐴, 𝐵}∀𝑛 ∈ ({𝐴, 𝐵} ∖ {𝑘}){𝑛, 𝑘} ∈ ran 𝐸))) |
20 | 19 | adantr 480 |
. . . 4
⊢ (({𝐴, 𝐵} USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵)) → (∀𝑘 ∈ {𝐴, 𝐵}∀𝑛 ∈ ({𝐴, 𝐵} ∖ {𝑘}){𝑛, 𝑘} ∈ ran 𝐸 ↔ ({𝐴, 𝐵} USGrph 𝐸 ∧ ∀𝑘 ∈ {𝐴, 𝐵}∀𝑛 ∈ ({𝐴, 𝐵} ∖ {𝑘}){𝑛, 𝑘} ∈ ran 𝐸))) |
21 | | difprsn1 4271 |
. . . . . . . . . 10
⊢ (𝐴 ≠ 𝐵 → ({𝐴, 𝐵} ∖ {𝐴}) = {𝐵}) |
22 | 21 | 3ad2ant3 1077 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({𝐴, 𝐵} ∖ {𝐴}) = {𝐵}) |
23 | 22 | adantl 481 |
. . . . . . . 8
⊢ (({𝐴, 𝐵} USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵)) → ({𝐴, 𝐵} ∖ {𝐴}) = {𝐵}) |
24 | 23 | raleqdv 3121 |
. . . . . . 7
⊢ (({𝐴, 𝐵} USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵)) → (∀𝑛 ∈ ({𝐴, 𝐵} ∖ {𝐴}){𝑛, 𝐴} ∈ ran 𝐸 ↔ ∀𝑛 ∈ {𝐵} {𝑛, 𝐴} ∈ ran 𝐸)) |
25 | | preq1 4212 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝐵 → {𝑛, 𝐴} = {𝐵, 𝐴}) |
26 | 25 | eleq1d 2672 |
. . . . . . . . . 10
⊢ (𝑛 = 𝐵 → ({𝑛, 𝐴} ∈ ran 𝐸 ↔ {𝐵, 𝐴} ∈ ran 𝐸)) |
27 | 26 | ralsng 4165 |
. . . . . . . . 9
⊢ (𝐵 ∈ 𝑊 → (∀𝑛 ∈ {𝐵} {𝑛, 𝐴} ∈ ran 𝐸 ↔ {𝐵, 𝐴} ∈ ran 𝐸)) |
28 | 27 | 3ad2ant2 1076 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → (∀𝑛 ∈ {𝐵} {𝑛, 𝐴} ∈ ran 𝐸 ↔ {𝐵, 𝐴} ∈ ran 𝐸)) |
29 | 28 | adantl 481 |
. . . . . . 7
⊢ (({𝐴, 𝐵} USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵)) → (∀𝑛 ∈ {𝐵} {𝑛, 𝐴} ∈ ran 𝐸 ↔ {𝐵, 𝐴} ∈ ran 𝐸)) |
30 | 24, 29 | bitrd 267 |
. . . . . 6
⊢ (({𝐴, 𝐵} USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵)) → (∀𝑛 ∈ ({𝐴, 𝐵} ∖ {𝐴}){𝑛, 𝐴} ∈ ran 𝐸 ↔ {𝐵, 𝐴} ∈ ran 𝐸)) |
31 | | difprsn2 4272 |
. . . . . . . . . 10
⊢ (𝐴 ≠ 𝐵 → ({𝐴, 𝐵} ∖ {𝐵}) = {𝐴}) |
32 | 31 | 3ad2ant3 1077 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({𝐴, 𝐵} ∖ {𝐵}) = {𝐴}) |
33 | 32 | adantl 481 |
. . . . . . . 8
⊢ (({𝐴, 𝐵} USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵)) → ({𝐴, 𝐵} ∖ {𝐵}) = {𝐴}) |
34 | 33 | raleqdv 3121 |
. . . . . . 7
⊢ (({𝐴, 𝐵} USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵)) → (∀𝑛 ∈ ({𝐴, 𝐵} ∖ {𝐵}){𝑛, 𝐵} ∈ ran 𝐸 ↔ ∀𝑛 ∈ {𝐴} {𝑛, 𝐵} ∈ ran 𝐸)) |
35 | | preq1 4212 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝐴 → {𝑛, 𝐵} = {𝐴, 𝐵}) |
36 | 35 | eleq1d 2672 |
. . . . . . . . . 10
⊢ (𝑛 = 𝐴 → ({𝑛, 𝐵} ∈ ran 𝐸 ↔ {𝐴, 𝐵} ∈ ran 𝐸)) |
37 | 36 | ralsng 4165 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝑉 → (∀𝑛 ∈ {𝐴} {𝑛, 𝐵} ∈ ran 𝐸 ↔ {𝐴, 𝐵} ∈ ran 𝐸)) |
38 | 37 | 3ad2ant1 1075 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → (∀𝑛 ∈ {𝐴} {𝑛, 𝐵} ∈ ran 𝐸 ↔ {𝐴, 𝐵} ∈ ran 𝐸)) |
39 | 38 | adantl 481 |
. . . . . . 7
⊢ (({𝐴, 𝐵} USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵)) → (∀𝑛 ∈ {𝐴} {𝑛, 𝐵} ∈ ran 𝐸 ↔ {𝐴, 𝐵} ∈ ran 𝐸)) |
40 | 34, 39 | bitrd 267 |
. . . . . 6
⊢ (({𝐴, 𝐵} USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵)) → (∀𝑛 ∈ ({𝐴, 𝐵} ∖ {𝐵}){𝑛, 𝐵} ∈ ran 𝐸 ↔ {𝐴, 𝐵} ∈ ran 𝐸)) |
41 | 30, 40 | anbi12d 743 |
. . . . 5
⊢ (({𝐴, 𝐵} USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵)) → ((∀𝑛 ∈ ({𝐴, 𝐵} ∖ {𝐴}){𝑛, 𝐴} ∈ ran 𝐸 ∧ ∀𝑛 ∈ ({𝐴, 𝐵} ∖ {𝐵}){𝑛, 𝐵} ∈ ran 𝐸) ↔ ({𝐵, 𝐴} ∈ ran 𝐸 ∧ {𝐴, 𝐵} ∈ ran 𝐸))) |
42 | | prcom 4211 |
. . . . . . . 8
⊢ {𝐵, 𝐴} = {𝐴, 𝐵} |
43 | 42 | eleq1i 2679 |
. . . . . . 7
⊢ ({𝐵, 𝐴} ∈ ran 𝐸 ↔ {𝐴, 𝐵} ∈ ran 𝐸) |
44 | 43 | anbi1i 727 |
. . . . . 6
⊢ (({𝐵, 𝐴} ∈ ran 𝐸 ∧ {𝐴, 𝐵} ∈ ran 𝐸) ↔ ({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐴, 𝐵} ∈ ran 𝐸)) |
45 | | anidm 674 |
. . . . . 6
⊢ (({𝐴, 𝐵} ∈ ran 𝐸 ∧ {𝐴, 𝐵} ∈ ran 𝐸) ↔ {𝐴, 𝐵} ∈ ran 𝐸) |
46 | 44, 45 | bitri 263 |
. . . . 5
⊢ (({𝐵, 𝐴} ∈ ran 𝐸 ∧ {𝐴, 𝐵} ∈ ran 𝐸) ↔ {𝐴, 𝐵} ∈ ran 𝐸) |
47 | 41, 46 | syl6bb 275 |
. . . 4
⊢ (({𝐴, 𝐵} USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵)) → ((∀𝑛 ∈ ({𝐴, 𝐵} ∖ {𝐴}){𝑛, 𝐴} ∈ ran 𝐸 ∧ ∀𝑛 ∈ ({𝐴, 𝐵} ∖ {𝐵}){𝑛, 𝐵} ∈ ran 𝐸) ↔ {𝐴, 𝐵} ∈ ran 𝐸)) |
48 | 18, 20, 47 | 3bitr3d 297 |
. . 3
⊢ (({𝐴, 𝐵} USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵)) → (({𝐴, 𝐵} USGrph 𝐸 ∧ ∀𝑘 ∈ {𝐴, 𝐵}∀𝑛 ∈ ({𝐴, 𝐵} ∖ {𝑘}){𝑛, 𝑘} ∈ ran 𝐸) ↔ {𝐴, 𝐵} ∈ ran 𝐸)) |
49 | 4, 48 | bitrd 267 |
. 2
⊢ (({𝐴, 𝐵} USGrph 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵)) → ({𝐴, 𝐵} ComplUSGrph 𝐸 ↔ {𝐴, 𝐵} ∈ ran 𝐸)) |
50 | 49 | expcom 450 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({𝐴, 𝐵} USGrph 𝐸 → ({𝐴, 𝐵} ComplUSGrph 𝐸 ↔ {𝐴, 𝐵} ∈ ran 𝐸))) |